\(\sqrt{a}\)>\(\sqrt{b}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

what ??? cái này là định lí mà, cần gì chứng minh

21 tháng 8 2018

do a>b nên a-b>0 ta có

\(a-b=\sqrt{a}^2-\sqrt{b}^2=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\) (*)

mà a-b>0 và \(\sqrt{a}+\sqrt{b}>0\)

từ (*) => \(\sqrt{a}-\sqrt{b}>0\) => \(\sqrt{a}>\sqrt{b}\left(đpcm\right)\)

26 tháng 7 2017

Bài 1:

a, \(\sqrt[4]{3}\) < 12

b, \(\sqrt{2}\) + \(\sqrt{11}\) < \(\sqrt{3}\) +5

c, \(\sqrt[5]{3}\) < \(\sqrt[3]{5}\)

Bài 2:

a, Ta có : a= \(\sqrt{a}\) * \(\sqrt{a}\) > a (vì a>1)

b, tương tự

29 tháng 10 2017

ta có: \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}.\)  (*)

\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)( vì a>0 ; b>0)

\(\Leftrightarrow\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}\ge\left(\sqrt{a}+\sqrt{b}\right)\sqrt{a.b}\) ( vì \(\sqrt{ab}\ge0\) )

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{a.b}+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-2\sqrt{a.b}+b\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)  luôn đúng vì \(\sqrt{a}+\sqrt{b}\ge0;\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với a>0;b>0

=>(*) luôn đúng => đpcm

2 tháng 8 2019

ta có \((\sqrt{a}-\sqrt{b})^2=a-2\sqrt{ab}+b\)

\(=a-b-2\sqrt{ab}+2b\)

\(=a-b-2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)

VÌ a>b>0 NÊN \(\sqrt{a}-\sqrt{b}>0\)

suy ra : \(a-b-2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)< a-b\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< \left(\sqrt{a-b}\right)^2\)

VẬY \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\left(đ.p.c.m\right)\)

1 tháng 9 2019

a, \(\sqrt{a}>\sqrt{b}< =>\left(\sqrt{a}\right)^2>\left(\sqrt{b}\right)^2< =>\left|a\right|>\left|b\right|< =>a>b\left(đpcm\right)\)b, \(\sqrt{a}< \sqrt{b}< =>\left(\sqrt{a}\right)^2< \left(\sqrt{b}\right)^2< =>\left|a\right|< \left|b\right|< =>a< b\left(đpcm\right)\)chúc bạn học tốt