Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(\sqrt[4]{3}\) < 12
b, \(\sqrt{2}\) + \(\sqrt{11}\) < \(\sqrt{3}\) +5
c, \(\sqrt[5]{3}\) < \(\sqrt[3]{5}\)
Bài 2:
a, Ta có : a= \(\sqrt{a}\) * \(\sqrt{a}\) > a (vì a>1)
b, tương tự
ta có: \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}.\) (*)
\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)( vì a>0 ; b>0)
\(\Leftrightarrow\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}\ge\left(\sqrt{a}+\sqrt{b}\right)\sqrt{a.b}\) ( vì \(\sqrt{ab}\ge0\) )
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{a.b}+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(a-2\sqrt{a.b}+b\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng vì \(\sqrt{a}+\sqrt{b}\ge0;\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với a>0;b>0
=>(*) luôn đúng => đpcm
ta có \((\sqrt{a}-\sqrt{b})^2=a-2\sqrt{ab}+b\)
\(=a-b-2\sqrt{ab}+2b\)
\(=a-b-2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)
VÌ a>b>0 NÊN \(\sqrt{a}-\sqrt{b}>0\)
suy ra : \(a-b-2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)< a-b\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< \left(\sqrt{a-b}\right)^2\)
VẬY \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\left(đ.p.c.m\right)\)
a, \(\sqrt{a}>\sqrt{b}< =>\left(\sqrt{a}\right)^2>\left(\sqrt{b}\right)^2< =>\left|a\right|>\left|b\right|< =>a>b\left(đpcm\right)\)b, \(\sqrt{a}< \sqrt{b}< =>\left(\sqrt{a}\right)^2< \left(\sqrt{b}\right)^2< =>\left|a\right|< \left|b\right|< =>a< b\left(đpcm\right)\)chúc bạn học tốt
what ??? cái này là định lí mà, cần gì chứng minh
do a>b nên a-b>0 ta có
\(a-b=\sqrt{a}^2-\sqrt{b}^2=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\) (*)
mà a-b>0 và \(\sqrt{a}+\sqrt{b}>0\)
từ (*) => \(\sqrt{a}-\sqrt{b}>0\) => \(\sqrt{a}>\sqrt{b}\left(đpcm\right)\)