Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=> \(ad=bc\)=> \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )
=> \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)
\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )
=>\(\frac{a}{b}=\frac{c}{a}\)=> \(a^2=bc\)( đpcm)
2. ....( đầu bài)
ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=>\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
AD t/ c dãy tỉ số bằng nhau ta có:
.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a+\left(b-b\right)}{2c+\left(d-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
. \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2b}{2d}=\frac{b}{d}\)(2)
Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\)(đpcm)
có \(a^2=bc=>a.a=bc=>\frac{a}{c}=\frac{b}{a}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}=>đpcm\)
a2 = b.c => a.a = b.c = \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}\)điều cần minh chứng
\(\frac{a}{b}<\frac{c}{d}\)
=> \(\frac{ad}{bd}<\frac{cb}{db}\)
=> ad < cb (vì có chung mẫu số là db
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\)
mà \(\frac{ad}{bd}\) và \(\frac{cb}{db}\) chung mẫu
\(\Rightarrow\) ad < bc
Ngược lại tương tự nhé.
chúc bạn học tốt
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
<=> (a+b)(c-a)=(a-b)(c+a)
<=> ac+bc-a2-ab=ac-bc+a2-ab
<=> ac+bc-ab-ac+bc+ab=a2+a2
<=> (ac-ac) + (bc+bc) + (ab-ab) = 2a2
<=> 2bc=2a2
=> a2 = bc (đpcm)
ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(a+a\right)\)\(ac-a^2+bc-ab==ac+a^2-bc-ac\)
\(\Rightarrow2a^2=2bc\)
\(\Rightarrow a^2=bc\)
đpcm
ai bt thì lm giúp tôi còn những ng ko bt đừng có xía vào, phiền lắm
Ta có : a 2 = bc
=> \(\frac{a}{b}=\frac{c}{a}\)
=> \(\frac{a}{b}=\frac{c}{a}=\frac{c-a}{a-b}=\frac{c+a}{a+b}\)
=> \(\frac{c+a}{c-a}=\frac{a+b}{a-b}\)
Ngược lại
Ta có :
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> ( a + b ) ( c - a ) = ( c + a ) ( a - b )
=> a ( c - a ) + b ( c - a ) = c ( a - b ) +a ( a - b )
=> ac -aa + bc - ab = ac - bc + aa - ab
=> - aa - aa = - bc - bc
=> - 2 a 2 = - 2 bc
=> a 2 = bc
Vậy a 2 = bc thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)và ngược lại