K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Xét hiệu :

H = \(\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2=\frac{2.\left(a^2+b^2\right)}{4}-\frac{\left(a+b\right)^2}{4}\)

\(=\frac{2a^2+2b^2-a^2-b^2-2ab}{4}=\frac{\left(a-b\right)^2}{2^2}=\left(\frac{a-b}{2}\right)^2\ge0\)\(\forall\)a,b

Dấu " = " xảy ra khi \(\left(\frac{a-b}{2}\right)^2=0\Leftrightarrow a=b\)

\(\Rightarrow\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)

Vậy ...

8 tháng 8 2016

Ta có :

\(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2-2ab\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

Vậy ...

15 tháng 4 2016

@Anh: Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi. 

=======================================... 
Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp 

Ta có 

ha=2S/a =r(a+b+c)/a 

=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)} 

=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) = 

=1/r^2/(1/a^2+1/b^2+1/c^2) 

Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*) 

=> T<=1/4 

=> Max(T) = 1/4 Khi tam giác đều 

====================== 
c/m bất đẳng thức (*) 

S = pr 

S= √p(p-a)(p-b)(p-c) 

=> pr= √p(p-a)(p-b)(p-c) 

=> (pr^2) = (p-a)(p-b)(p-c) 

=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c) 

=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2 

=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2 

=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4

Đúng nha Trần Thị Kiều Linh

20 tháng 6 2017

a)Ta có:\(a^2-ab+b^2=a^2-2.\frac{1}{2}ab+\frac{1}{4}b^2+\frac{3}{4}b^2\)

                                        \(=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\)

                       Vì \(\left(a-\frac{1}{2}b\right)^2\ge0;\frac{3}{4}b^2\ge0\)

              \(\Rightarrow\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\)

Vậy \(a^2-ab+b^2\ge0\)

b)Tương tự với a

20 tháng 6 2017

b)a^2 +ab +b^2 = a^2 +ab +(b/2 )^2+ 3b^2/4 
= (a+b/2)^2 +3b^2/4 sẽ lớn hơn hoặc bằng 0

7 tháng 12 2016

giả sử a2+b2+c2 lớn hơn bằng ab+bc+ca=)a2+b2+c2-ab-bc-ca lớn hơn bằng 0

=)2.(a2+b2+c2-ab-bc-ca) lớn hơn bằng 0

=)2a2+2b2+2c2-2ab-2bc-2ca lớn hơn bằng 0

=)(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) lớn hơn bằng 0

=)(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0 mà (a-b)2,(b-c)2,(c-a)2 luôn lớn hơn bằng 0

=)điều giả sử đúng =)điều phải chứng minh

20 tháng 4 2022

giả sử a2+b2+c2 lớn hơn bằng ab+bc+ca=)a2+b2+c2-ab-bc-ca lớn hơn bằng 0

 

=)2.(a2+b2+c2-ab-bc-ca) lớn hơn bằng 0

 

=)2a2+2b2+2c2-2ab-2bc-2ca lớn hơn bằng 0

 

=)(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) lớn hơn bằng 0

 

=)(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0 mà (a-b)2,(b-c)2,(c-a)2 luôn lớn hơn bằng 0

 

=)điều giả sử đúng =)điều phải chứng minh