\(199^3-199⋮200\)

b. \(742^3-692^3⋮200\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

a. Đặt A = 1993 - 199

= 199(1992-1)

= 199(199-1)(199+1)

= 199 . 198 . 200

Vì 200 \(⋮\) 200 nên A \(⋮\) 200 (đpcm)

\(a;43^2+43.17=43\left(43+17\right)=43.60⋮60\left(đpcm\right)\)

\(b;27^5-3^{11}=3^{15}-3^{11}=3^{11}\left(3^4-1\right)=3^{11}.80⋮80\left(đpcm\right)\)

c: =>|x-2|+3=-5 hoặc |x-2|+3=5

=>|x-2|=2

=>x-2=2 hoặc x-2=-2

=>x=4 hoặc x=0

11 tháng 8 2017

Câu này chắc chắn có bạn trả lời được thôi. Dùng đồng dư hoặc hàm euler.
câu a: Mình gợi ý chứng minh M chia hết cho 3 nhưng không chia hết cho 9 nên M không là số chính phương.

11 tháng 8 2017

a, Nguyên lý đirichle cứu với!!!!!!!! | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

b, Ta có: \(20^5\equiv1\left(mod11\right)\)

\(\left(20^5\right)^3\equiv1^3\equiv1\left(mod11\right)\)

Tương ứng với \(20^{15}\) : 11 dư 1

=> 2015 - 1 \(⋮\) 11 (đpcm)

c, Có: \(2^{30}\equiv12\left(mod13\right)\);

\(3^{15}\equiv1\left(mod13\right)\)

\(\left(3^{15}\right)^2\equiv1^2\equiv1\left(mod13\right)\)

<=> \(2^{30}+3^{30}\) \(\equiv12+1\equiv13\left(mod13\right)\)

Vì 13 chia hết cho 13 nên 230 + 330 chia hết cho 13 (đpcm)

d, tượng tự b

30 tháng 6 2017

Ta có :

\(685^3\equiv19125\left(mod25000\right)\)

\(315^3\equiv5875\left(mod25000\right)\)

\(\Leftrightarrow685^3+315^3\equiv25000\left(mod25000\right)\)

\(\Leftrightarrow685^3+315^3⋮25000\rightarrowđpcm\)

Cảm ơn sư phụ đã chỉ bảo :3

Question 1 :

a )\(A=1+2+3+.......+n=\dfrac{1}{2}.n.\left(n+1\right)\)

b ) \(B=1^2+2^2+3^2+......+n^2=\dfrac{1}{6}.n\left(n+1\right)\left(2n+1\right)\)

c ) \(C=1^3+2^3+3^3+......+n^3=\dfrac{1}{4}.n^2.\left(n+1\right)^2\)

Question 2 :

a ) \(199^3-199=199\left(199^2-1\right)=199\left(199-1\right)\left(199+1\right)=198.199.200⋮200\left(đpcm\right)\)

b ) Ta có :

\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(a,b,c>0\) \(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

Wish you study well !!

Bạn nào làm được câu a , t bái bạn đó làm sư phụ :3

4 tháng 2 2020

a/ \(7x-5=13-5x\)

\(\Leftrightarrow7x+5x=13+5\)

\(\Leftrightarrow12x=18\)

\(\Leftrightarrow x=\frac{3}{2}\)

b/\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)

\(\Leftrightarrow10x-15-20x+28=19-2x-22\)

\(\Leftrightarrow10x-20x+2x=19-22-28+15\)

\(\Leftrightarrow-8x=-16\)

\(\Leftrightarrow x=2\)

c/ \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)

\(\Leftrightarrow\frac{7\left(2x-1\right)-3\left(5x+2\right)-21\left(x+13\right)}{21}=0\)

\(\Leftrightarrow14x-7-15x-6-21x-273=0\)

\(\Leftrightarrow-22x-286=0\)

\(\Leftrightarrow x=-13\)

e/ \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{2}{x+1}-\frac{1}{x-2}-\frac{3x-11}{\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)\left(x+2\right)-\left(x+1\right)\left(x+2\right)-\left(3x-11\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2\left(x^2-4\right)-\left(x^2+3x+2\right)-\left(3x^2-17x+22\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow2x^2-8-x^2-3x-2-3x^2+17x-22=0\)

\(\Leftrightarrow-2x^2+14x-32=0\)

\(\Leftrightarrow x^2-7x+16=0\)

\(\Leftrightarrow x=\frac{-\left(-7\right)\pm\sqrt{\left(-7\right)^2-4.1.16}}{2}\)

\(\Leftrightarrow x=\frac{7\pm\sqrt{-15}}{2}\left(ktm\right)\)

\(\Leftrightarrow x\in\varnothing\)

4 tháng 2 2020

Bài 1:

a) \(7x-5=13-5x\)

\(\Leftrightarrow7x+5x=13+5\)

\(\Leftrightarrow12x=18\)

\(\Leftrightarrow x=18:12\)

\(\Leftrightarrow x=\frac{3}{2}.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{3}{2}\right\}.\)

b) \(5.\left(2x-3\right)-4.\left(5x-7\right)=19-2.\left(x+11\right)\)

\(\Leftrightarrow10x-15-\left(20x-28\right)=19-\left(2x+22\right)\)

\(\Leftrightarrow10x-15-20x+28=19-2x-22\)

\(\Leftrightarrow13-10x=-3-2x\)

\(\Leftrightarrow13+3=-2x+10x\)

\(\Leftrightarrow16=8x\)

\(\Leftrightarrow x=16:8\)

\(\Leftrightarrow x=2.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2\right\}.\)

c) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)

\(\Leftrightarrow\frac{7.\left(2x-1\right)}{7.3}-\frac{3.\left(5x+2\right)}{3.7}=\frac{21.\left(x+13\right)}{21}\)

\(\Leftrightarrow\frac{14x-7}{21}-\frac{15x+6}{21}=\frac{21x+273}{21}\)

\(\Leftrightarrow14x-7-\left(15x+6\right)=21x+273\)

\(\Leftrightarrow14x-7-15x-6=21x+273\)

\(\Leftrightarrow-x-13=21x+273\)

\(\Leftrightarrow-x-21x=273+13\)

\(\Leftrightarrow-22x=286\)

\(\Leftrightarrow x=286:\left(-22\right)\)

\(\Leftrightarrow x=-13.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-13\right\}.\)

Chúc bạn học tốt!

Chúc bạn học tốt :))