Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ba}{c^2}=1\)
\(\frac{b^3c^3}{a^2b^2c^2}+\frac{a^3c^3}{a^2b^2c^2}+\frac{b^3c^3}{a^2b^2c^2}=1\)
\(\frac{b^3c^3+a^3c^3+b^3a^3}{a^2b^2c^2}=1\)
\(\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{a^2b^2c^2}=1\)
từ đây rút gọn abc với abc rồi tính tiếp.
cần gì cứ hỏi nha!
Bài 2:
a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)
Vì \(a+b+c=0\)
Nên a + b = -c (1)
Thay (1) vào A, ta được:
\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)
\(A=\dfrac{1}{abc}.3abc\)
\(A=3\)
b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)
Vì \(a+b+c=0\)
Nên b + c = -a
=> ( b + c )2 = (-a)2
=> b2 + c2 + 2bc = a2
=> b2 + c2 = a2 - 2bc (1)
Tương tự ta có: c2 + a2 = b2 - 2ac (2)
a2 + b2 = c - 2ab (3)
Thay (1), (2) và (3) vào B, ta được:
\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)
\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)
\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)
\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)
Mà \(a^3+b^3+c^3=3abc\) ( câu a )
\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)
\(\Rightarrow B=\dfrac{3}{2}\)
Bài 1:
a) GT: abc = 2
\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)
\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(M=\dfrac{1+b+bc}{bc+b+1}\)
\(M=1\)
b) GT: abc = 1
\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)
\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)
\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(N=\dfrac{1+b+bc}{bc+b+1}\)
\(N=1\)
Đặt \(A=\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ca}=\frac{a^2+2ab+b^2}{ab}+\frac{b^2+2bc+c^2}{bc}+\frac{c^2+2ac+c^2}{ca}\)
\(=\frac{a}{b}+2+\frac{b}{a}+\frac{b}{c}+2+\frac{c}{b}+\frac{c}{a}+2+\frac{a}{c}=6+a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{c}\right)+c\left(\frac{1}{b}+\frac{1}{a}\right)\)
\(\ge6+\frac{4a}{b+c}+\frac{4b}{c+a}+\frac{4c}{a+b}\ge6+2\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+b}\right)+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
\(\ge6+2\cdot\frac{3}{2}+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=9+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
Dấu "=" xảy ra <=> a=b=c
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(=a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow2\left(ab+bc+ac\right)=3\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)\)
\(\Rightarrow2\left(ab+bc+ac\right)=2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow ab+bc+ac=a^2+b^2+c^2\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
ta thấy từ a+b+c=0 \(\Leftrightarrow a^3+b^3+c^3=3abc\)(được cm nhiều trg sách cx như trên mạng)
\(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)
suy ra đpcm
Ta có : \(a+b+c=0\)
Lập phương 2 vế lên ta có :
\(\left(a+b+c\right)^3=0^3\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Ta lại có:
\(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)
\(\Rightarrow\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}-3=0\)
\(\Leftrightarrow\frac{a^3+b^3+c^3}{abc}-3=0\)
Theo chứng minh trên có : \(a^3+b^3+c^3=3abc\)
\(\Rightarrow\frac{3abc}{abc}-3=0\)
\(\Leftrightarrow3-3=0\)( đúng )
Vậy với \(a+b+c=0\left(a\ne0;b\ne0;c\ne0\right)\)thì \(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)
Sửa đề: Cho \(a;b;c>0\). \(CMR:\)
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)