\(\left(1^{2009}+2^{2009}+...+2009^{2009}\right)\) chia hết cho ( 1 +2 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 8 2020

\(P\left(k\right)+P\left(1-k\right)=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{2\left(1-k\right)+1}}{2^{2\left(1-k\right)}-2}=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{3-2k}}{2^{2-2k}-2}\)

\(=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^2}{2-2^{2k}}=\frac{2^{2k+1}}{2^{2k}-2}-\frac{4}{2^{2k}-2}=\frac{2\left(2^{2k}-2\right)}{2^{2k}-2}=2\) (đpcm)

Áp dụng cho câu b:

\(A=2009+P\left(\frac{1}{2009}\right)+P\left(\frac{2008}{2009}\right)+P\left(\frac{2}{2009}\right)+P\left(\frac{2007}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(\frac{1005}{2009}\right)\)

\(=2009+P\left(\frac{1}{2009}\right)+P\left(1-\frac{1}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(1-\frac{1004}{2009}\right)\)

\(=2009+2+2+...+2\) (có 1004 số 2)

\(=2009+2.1004=4017\)

20 tháng 5 2016

Khó quá à ! Mình mới học lớp 7 thôi ! Ai đồng ý nhấn nút Đúng ở cuối câu trả lời của mình nhé !!!!!!!!!!!!!!!!!!!!

20 tháng 5 2016

Thằng ni iu Trà Mi pải k ta

18 tháng 5 2020

\(x^2-x-1=0\)

Ta có \(\Delta=b^2-4ac=\left(-1\right)^2-4.1.\left(-1\right)=1+4=5>0\)\(\sqrt{\Delta}=\sqrt{5}\)

Phuông trình có 2 nghiệm phân biệt 

\(a=x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\)

\(b=x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-\sqrt{5}}{2}\)

Ta có \(a^{2007}+b^{2007}+a^{2009}+b^{2009}\)

\(\Leftrightarrow a^{2007}.\left(1+a^2\right)+b^{2007}.\left(1+b^2\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(1+\left(\frac{1+\sqrt{5}}{2}\right)^2\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(1+\left(\frac{1-\sqrt{5}}{2}\right)^2\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(1+\frac{3+\sqrt{5}}{2}\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(1+\frac{3-\sqrt{5}}{2}\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(\frac{5+\sqrt{5}}{2}\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(\frac{5-\sqrt{5}}{2}\right)\)

\(\Leftrightarrow\sqrt{5}.\left(\frac{1+\sqrt{5}}{2}\right)^{2008}+\sqrt{5}.\left(\frac{1-\sqrt{5}}{2}\right)^{2008}\)

\(\Leftrightarrow\sqrt{5}.\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2008}+\left(\frac{1-\sqrt{5}}{2}\right)^{2008}\right]⋮5\)  (ĐPCM)

Nhớ k cho mình nhé 

13 tháng 2 2019

\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)

<=> x+y = 0 hoặc x+z=0 hoặc z+y=0

<=> x = -y hoặc x = -z hoặc z = -y

\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)

1 tháng 3 2020

\(\left\{{}\begin{matrix}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{matrix}\right.\) \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)

\(\Leftrightarrow x+y=0\) hoặc \(x+z=0\) hoặc \(z+y=0\)

\(\Leftrightarrow x=-y\) hoặc \(x=-z\) hoặc z=-y

\(\Rightarrow P\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)

Chúc bạn học tốt !!