K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(\text{​​}A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+\left(2^7+2^8\right)+\left(2^9+2^{10}\right)\)

     \(=2.\left(1+2\right)+2^3.\left(1+2\right)+2^5.\left(1+2\right)+2^7.\left(1+2\right)+2^9.\left(1+2\right)\)

      \(=2.3+2^3.3+2^5.3+2^7.3+2^9.3\)

       \(=3\left(2+2^3+2^5+2^7+2^9\right)\)

Thấy : \(2+2^3+2^5+2^7+2^9\in N\)

\(\Rightarrow3\left(2+2^3+2^5+2^7+2^9\right)⋮3\)

Hay : \(A⋮3\)( đpcm )

9 tháng 12 2018

A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

A = ( 2 + 22 ) + ( 23 + 24 ) + ( 25 + 26 ) + ( 27 + 28 ) + ( 29 + 210 )

A = 2.( 1 + 2 ) + 23.( 1 + 2 ) + 25.( 1 + 2 ) + 27.( 1 + 2 ) + 29.( 1 + 2 )

A = 2.3 + 23.3 + 25. 3 + 27.3 + 29.3

A = 3.( 2 + 23 + 25 + 27 + 29 ) \(⋮\)3

Vậy A chia hết cho 3.

14 tháng 8 2017

Ai giúp mình với

16 tháng 1 2018

toán lớp mấy đấy

MÌNH CHỈ LÀM ĐƯỢC a,b,c,d thôi và e ý 1

2 tháng 9 2019

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

2 tháng 9 2019

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

18 tháng 12 2019

A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

A = (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)

A = 2(1 + 2) + 23(1 + 2) + 25(1 + 2) + 27(1 + 2) + 29(1 + 2)

A = 2.3 + 23.3 + 25.3 + 27.3 + 29.3

A = (2 + 23 + 25 + 27 + 29) . 3

Mà 3 ⋮ 3

⇔ A ⋮ 3

6 tháng 10 2018

Câu 2;3;4 dễ quá... bỏ qua!!

Câu 5;6 khó quá ... khỏi làm!!

dễ quá bỏ qua!!, khó quá khỏi làm!!

cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.

13 tháng 8 2019

\(A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+\left(2^7+2^8\right)+\left(2^9+2^{10}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+2^7\left(1+2\right)+2^9\left(1+2\right)\)

\(A=2\cdot3+2^3\cdot3+2^5\cdot3+2^7\cdot3+2^9\cdot3\text{ }⋮\text{ }3\)

13 tháng 8 2019

\(A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+\left(2^7+2^8\right)+\left(2^9+2^{10}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+2^7\left(1+2\right)+2^9\left(1+2\right)\)

\(A=2\cdot3+2^3\cdot3+2^5\cdot3+2^7\cdot3+2^9\cdot3\)

\(\Rightarrow\text{ }A\text{ }⋮\text{ }3\text{ }\left(\text{ ĐPCM}\right)\)