
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



+) Vì nếu số đó lớn hơn 3 có dạng là 3n thì số đó chia hết cho 3 => Hợp số
=> Số đó phải có dạng 3n + 1( chia 3 dư 1) hoặc 3n - 1
Với 3n - 1 tương đương với 3(n-1) + 2 ( chia 3 dư 2)
+) Chưa chắc đã là số nguyên tố , Giả sử n lẻ => 3n lẻ => 3n - 1 hoặc 3n + 1 chẵn => Hợp số

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)


mình làm câu 2 nha
B= 88...8 -9 + n ( n chữ số 8)
B= 11...1×8 -9 + n ( n chữ số 1)
B= 8n - 9 + n
B=9n - 9
B=9 . (n-1) chia hết cho 9
=> B chia hết cho 9
=> đpcm
Mình làm cả câu 3 nha
Số 111...1114333...333 (2012 chữ số 1;2012 chữ số 3) có tổng các chữ số là :1.2012+4+3.2012=8052 chia hết cho 3
=>1111...11433...33 (2012 chữ số 1;2012 chữ số 3) chia hết cho 3
Mà số đó lớn hơn 3
=>111...1114333...333 (2012 chữ số 1;2012 chữ số 3) là hợp số
=>đpcm

Bài 1:
a: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+1 thì 8p+1=8(3k+1)+1=24k+8+1=24k+9=3(8k+3)⋮3
=>Loại
=>p=3k+2
4p+1=4(3k+2)+1
=12k+8+1
=12k+9
=3(4k+3)⋮3
=>4p+1 là hợp số
b: TH1: p=3
\(2p^2+1=2\cdot3^2+1=2\cdot9+1=18+1=19\) là số nguyên tố
=>Nhận
\(7p+2=7\cdot3+2=21+2=23\) là số nguyên tố
TH2: p=3k+1
\(2p^2+1=2\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1\)
\(=18k^2+12k+2+1=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3
=>Loại
TH3: p=3k+2
\(2p^2+1=2\left(3k+2\right)^2+1\)
\(=2\left(9k^2+12k+4\right)+1\)
\(=18k^2+24k+8+1=18k^2+24k+9=3\left(6k^2+8k+3\right)\) ⋮3
=>Loại
Bài 1
a) Cho \(p\) là số nguyên tố lớn hơn 3. Chứng minh rằng \(8 p + 1\) là số nguyên tố. Chứng minh \(4 p + 1\) là hợp số.
Chứng minh \(8 p + 1\) là số nguyên tố:
- Ta có \(p\) là số nguyên tố lớn hơn 3, vậy \(p \geq 5\).
- Xét biểu thức \(8 p + 1\). Ta sẽ thử một số giá trị của \(p\):
- Nếu \(p = 5\), ta có:
\(8 p + 1 = 8 \left(\right. 5 \left.\right) + 1 = 41\)
\(41\) là số nguyên tố. - Nếu \(p = 7\), ta có:
\(8 p + 1 = 8 \left(\right. 7 \left.\right) + 1 = 57\)
\(57\) không phải là số nguyên tố vì \(57 = 3 \times 19\). - Nếu \(p = 11\), ta có:
\(8 p + 1 = 8 \left(\right. 11 \left.\right) + 1 = 89\)
\(89\) là số nguyên tố.
- Nếu \(p = 5\), ta có:
Vậy, không phải mọi \(p\) thỏa mãn điều kiện bài toán đều tạo ra \(8 p + 1\) là số nguyên tố. Ta không thể chứng minh điều này với mọi \(p\). Nên bài toán này có thể cần điều kiện bổ sung hoặc có thể có lỗi trong cách đặt bài toán.
Chứng minh \(4 p + 1\) là hợp số:
- Ta có \(p \geq 5\), vậy xét \(4 p + 1\):
- Nếu \(p = 5\), ta có:
\(4 p + 1 = 4 \left(\right. 5 \left.\right) + 1 = 21\)
\(21\) là hợp số vì \(21 = 3 \times 7\). - Nếu \(p = 7\), ta có:
\(4 p + 1 = 4 \left(\right. 7 \left.\right) + 1 = 29\)
\(29\) là số nguyên tố. - Nếu \(p = 11\), ta có:
\(4 p + 1 = 4 \left(\right. 11 \left.\right) + 1 = 45\)
\(45\) là hợp số vì \(45 = 3 \times 15\).
- Nếu \(p = 5\), ta có:
Như vậy, không phải mọi giá trị của \(p\) thỏa mãn điều kiện \(p\) đều tạo ra \(4 p + 1\) là hợp số. Ta không thể chứng minh điều này cho mọi \(p\) mà không có điều kiện bổ sung.
b) Chứng minh \(p\) và \(2 p^{2} + 1\) là các số nguyên tố. Hỏi \(7 p + 2\) là số nguyên tố hay hợp số?
Giả sử \(p\) là số nguyên tố và \(2 p^{2} + 1\) là số nguyên tố. Ta sẽ thử một số giá trị của \(p\).
- Nếu \(p = 5\), ta có:
\(2 p^{2} + 1 = 2 \left(\right. 5 \left.\right)^{2} + 1 = 2 \left(\right. 25 \left.\right) + 1 = 51\)
\(51\) không phải là số nguyên tố vì \(51 = 3 \times 17\).
Như vậy, không phải mọi \(p\) thỏa mãn điều kiện bài toán đều tạo ra \(2 p^{2} + 1\) là số nguyên tố. Ta không thể chứng minh điều này với mọi giá trị của \(p\).
Bài 2
Cho số tự nhiên \(n > 2\) và không chia hết cho 3. Chứng minh rằng hai số \(n^{2} - 1\) và \(n^{2} + 1\) không thể đồng thời là số nguyên tố.
Chứng minh:
- Gọi \(p = n^{2} - 1\) và \(q = n^{2} + 1\).
- Ta biết \(p = n^{2} - 1 = \left(\right. n - 1 \left.\right) \left(\right. n + 1 \left.\right)\).
- Nếu \(n\) là số nguyên lớn hơn 2, thì \(p = n^{2} - 1\) sẽ là một tích của hai số nguyên lớn hơn 1, do đó \(p\)là hợp số, không phải là số nguyên tố.
- Do đó, \(p = n^{2} - 1\) không thể là số nguyên tố.
- Tiếp theo, ta xét \(q = n^{2} + 1\).
- \(n^{2} + 1\) có thể là số nguyên tố hoặc hợp số tùy thuộc vào giá trị của \(n\), nhưng không thể có cả \(p = n^{2} - 1\) và \(q = n^{2} + 1\) cùng là số nguyên tố.
Kết luận: Do \(p = n^{2} - 1\) không thể là số nguyên tố, nên \(n^{2} - 1\) và \(n^{2} + 1\) không thể đồng thời là số nguyên tố.
Bài 3
Ta gọi \(p\) và \(q\) là hai số nguyên tố liên tiếp nếu giữa \(p\) và \(q\) không có số nguyên tố nào khác (ví dụ: \(7\) và \(11\) là hai số nguyên tố liên tiếp). Tìm ba số nguyên tố liên tiếp \(p\), \(q\), \(r\) sao cho \(p^{2} + q^{2} + r^{2}\) cũng là số nguyên tố.
Giải:
Ta sẽ thử một số bộ ba số nguyên tố liên tiếp nhỏ:
- Nếu \(p = 3\), \(q = 5\), \(r = 7\), ta có:
\(p^{2} + q^{2} + r^{2} = 3^{2} + 5^{2} + 7^{2} = 9 + 25 + 49 = 83\)
\(83\) là số nguyên tố.
Vậy ba số nguyên tố liên tiếp \(p = 3\), \(q = 5\), \(r = 7\) thỏa mãn điều kiện bài toán, vì \(p^{2} + q^{2} + r^{2} = 83\) là số nguyên tố.
Kết luận: Ba số nguyên tố liên tiếp \(p = 3\), \(q = 5\), \(r = 7\) sao cho \(p^{2} + q^{2} + r^{2} = 83\) là số nguyên tố.

số 22222222...22222222200333333333...333333333333 có tổng các chữ số là: 2+2+2+2+...+2+0+0+3+3+3+...+3+3
=2.2001+3.2003 chia hết cho 3.
Mà 1<3<222...2220033...33 nên 222...2220033...33 là hợp số.
mà bạn học trường nào hả Nguyễn Doanh Thái?