K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

a, 2(a2+b2)>(a+b)2

<=>2a2+2b2>a2+2ab+b2

<=>a2-2ab+b2>0

<=>(a-b)2>0 đúng vs mọi a,b

25 tháng 10 2019

Thay 1=\(\frac{a^2+b^2+c^2}{3}\)vào va rút gọn ta được

VT= \(\frac{4}{3}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3}\left(\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{a}\right)+\frac{1}{3}\left(a+b+c\right)\)(1)

Áp dụng \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(bunhiacopxky\right)\) ta được

(1) \(\ge\frac{4}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\left(a+b+c\right)=2\left(a+b+c\right).\)

Dấu'=' khi a=b=c

18 tháng 8 2017

Giả sử ab(\(a^2+b^2\))\(\le\)2 là đúng \(\Rightarrow\)ab((a+b)^2-2ab)-2\(\le\)0\(\Rightarrow\)ab(4-2ab)-2\(\ge\)0\(\Rightarrow\)4ab-2(ab)^2-2\(\le\)0\(\Rightarrow\)-2(a^2b^2-2ab+1)\(\le\)0\(\Rightarrow\)-2(ab-1)^2\(\le\)0( điều này luôn đúng với\(\forall\)a,b) , ta có ĐPCM