Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 20\(x^2y^3\) : 4x\(y^2\) = 5xy
2. \(\dfrac{-1}{2}x^4y^4\) : \(\dfrac{2}{3}x^2y^2\) = \(\dfrac{-3}{4}x^2y^2\)
3. \(\left(-xy\right)^6:\left(-xy\right)^2=\left(-xy\right)^2\) = xy
4. 27\(x^2y^3z^4:\left(-3xyz\right)^2\) = 27\(x^2y^3z^4\) : 9 \(x^2y^2z^2\) = 3y\(z^2\)
5. \(\left(-x\right)^{10}:\left(-x\right)^5=\left(-x\right)^2\) = x
1. \(\left(-a\right)^7\) : \(a^5\) = \(\left(-a\right)^2\) = a
2. 28 \(y^4z^3\) : 14 \(y^3z^2\) = 2yz
3. 25\(a^2bc^2\) : 5abc = 5ac
Giải:
1) \(9x^2-12xy+4y^2-3\)
\(=\left(3x-2y\right)^2-3\)
\(=\left(3x-2y-\sqrt{3}\right)\left(3x-2y+\sqrt{3}\right)\) (Bước này chắc không cần)
2) \(x^2+4x+1\)
\(=x^2+4x+4-3\)
\(=\left(x+2\right)^2-3\)
\(=\left(x+2-\sqrt{3}\right)\left(x+2+\sqrt{3}\right)\)
(Bước này chắc không cần)
3) \(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\)
4) \(x^2+6x+15\)
\(=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
5) \(x^2-x+\dfrac{1}{3}\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)
6) \(\dfrac{1}{4}x^2+x\)
\(=\left(\dfrac{1}{2}x\right)^2+x+1-1\)
\(=\left(\dfrac{1}{2}x+1\right)^2-1\)
7) \(3x^2+2x+1\)
\(=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
8) \(2x^2-2x+1\)
\(=x^2-2x+1+x^2\)
\(=\left(x-1\right)^2+x^2\)
9) \(10a^2+5b^2+12ab+4a-6b+15\)
\(=4a^2+6a^2+4b^2+b^2+12ab+4a-6b+15\)
\(=\left(6a^2+b^2+12ab\right)+4a+4a^2-6b+4b^2+15\)
\(=\left(6a+b\right)^2+4a\left(1+a\right)-2b\left(3+2b\right)+15\)
Giải:
1) \(9x^2-12xy+4y^2-3\)
\(=\left(9x^2-12xy+4y^2\right)-3\)
\(=\left(3x-2y\right)^2-3\)
2) \(x^2+4x+1\)
\(=x^2+4x+4-3\)
\(=\left(x+2\right)^2-3\)
3) \(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\)
4) \(x^2+6x+15\)
\(=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
5) \(x^2-x+\dfrac{1}{3}\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)
6) \(\dfrac{1}{4}x^2+x\)
\(=x\left(\dfrac{1}{4}x+1\right)\)
7) \(3x^2+2x+1\)
\(=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
8) \(2x^2-2x+1\)
\(=x^2-2x+1+x^2\)
\(=\left(x-1\right)^2+x^2\)
9) \(10a^2+5b^2+12ab+4a-6b+15\)
\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)
\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)
\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)
Vậy ...
a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
1: \(\Leftrightarrow3x+4x=4\)
=>7x=4
hay x=4/7
2: \(\Leftrightarrow3x-5x-5^3:5^2=0\)
=>-2x=5
=>x=-5/2
1: \(=\left(3x-2y\right)^2-3\)
2: \(=x^2+4x+4-3=\left(x+2\right)^2-3\)
3: \(=x^2-4x+4+3=\left(x-2\right)^2+3\)
5 \(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)
6: \(=\dfrac{1}{4}x^2+x+1-1=\left(\dfrac{1}{2}x+1\right)^2-1\)
a: \(=\left(23^2\right)^3-\left(13^2\right)^3\)
\(=\left(23^2-13^2\right)\left(23^4+23^2\cdot13^2+13^4\right)\)
\(=360\cdot A⋮360\)
b: \(=5^6\left(5^6+1\right)=5^6\cdot15626\)
\(=5^2\cdot5^4\cdot26\cdot601=650\cdot A⋮650\)