K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NT
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
IA
0
KC
1
VM
4 tháng 10 2019
Đặt \(A=999...98000...01\)
\(A=10...0-199...9\) (n chữ số \(9,2n+1\) chữ số 0)
\(A=\left(10...0\right)^2-\left(10...0-9...9\right).\left(10...0+9...9\right)\) (n chữ số \(0,n-1\) chữ số 9)
\(A=\left(10...0\right)^2-\left[\left(10...0\right)^2-\left(9...9\right)^2\right]\)
\(A=\left(9...9\right)^2\)
\(\Rightarrow A\) là bình phương của một số (đpcm).
Chúc bạn học tốt!
I
0
6 tháng 10 2019
b. Câu hỏi của Phạm Minh Phương t - Toán lớp 8 - Học toán với OnlineMath
Đặt \(A=999...98000...01\)
\(A=10...0-199...9\) ( n chữ số 9 , \(2n+1\) chữ số 0 )
\(A=\left(10...0\right)^2-\left(10...0-9...9\right).\left(10...0+9...9\right)\) ( n chữ số 0 , n-1 chũ số 9 )
\(A=\left(10...0\right)^2-\left[\left(10...0\right)^2-\left(9...9\right)^2\right]\)
\(A=\left(9...9\right)^2\)
\(\Rightarrow A\) là bình phương của một số ( đpcm )
Chúc bạn học tốt !!!
Chứng minh : 999...98000...01 là có n chữ số 0 và n chữ số 9 là bình phương 1 số
999...98000...01 ( gồm n chữ số 0 và 9 )
= 999...99000..000 ( gồm n chữ số 9 và n + 2 chữ số 0 ) + 800...000 ( n +1 chữ số 0 ) +1
= 1000...000 ( 2n + 2 chữ số 0 ) - 1000... 000 ( n+2 ) chữ số 0 + 800...000 ( n +1 chữ số 0 ) +1
= 1000...000 ( 2n + 2 chữ số 0 ) - 200...000 ( n +1 chữ số 0 ) +1
= \(10^{2n+2}-2.10^{n+1}+1\)
= \(\left(10^{n+1}-1\right)^2\)
Vậy :....