Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(8^2\equiv1\left(mod9\right)\)
\(\Rightarrow\left(8^2\right)^{50}=8^{100}\equiv1\left(mod9\right)\)
\(\Rightarrow\left(8^{100}-1\right)⋮9\left(đpcm\right)\)
Ta có 8\(\equiv\)-1(mod 9)=> 8100\(\equiv\)(-1)100\(\equiv\)1(mod 9)
=>8100-1\(⋮\)9(đpcm)
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
1, Số có tận cùng là 3 khi nâng lên lũy thừa 4n sẽ có tận cùng là 1
Do đó: \(43^{43}=43^{4.10+3}=\left(....1\right).\left(...7\right)=\left(...7\right)\)
Số có tận cùng là 7 khi nâng lên lũy thừa 4n sẽ có tận cùng là 1
Do đó: \(17^{17}=17^{4.4+1}=\left(.....1\right).\left(...7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(...7\right)-\left(....7\right)=\left(....0\right)\)
Số có tận cùng là 0 thì chia hết cho 5
\(\Rightarrow43^{43}-17^{17}⋮5\)
2. Tổng các chữ số của \(100^{1995}\)là:
1+0+0+....+0=1
\(\Rightarrow\)Tổng các chữ số của \(100^{1995}\)và 8 là:
1+8=9 \(⋮\)9
\(\Rightarrow\left(100^{1995}+8\right)⋮9\)
Vậy \(\frac{100^{1995}+8}{9}\)là số tự nhiên
3, \(3+3^2+3^3+....+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{96}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+3^5+...+3^{96}\right)\)
\(\Rightarrow\left(3+3^2+3^3+....+3^{100}\right)⋮40\)(vì có chứa thừa số 40)
a)\(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2^2-1}+\dfrac{1}{4^2-1}+...+\dfrac{1}{100^2-1}\)
\(A< \dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\)
\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}< \dfrac{50}{100}=\dfrac{1}{2}\)
Vậy \(A< \dfrac{1}{2}\)
b)B=\(\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{2499}{2500}\)
49-B=\(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
\(49-B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(49-B< 1-\dfrac{1}{50}< 1\Leftrightarrow49< 1+B\Leftrightarrow B>48\)(ĐPCM)
b) Đặt :
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+............+\dfrac{2499}{2500}\)
\(\Rightarrow A=\dfrac{4}{4}-\dfrac{1}{4}+\dfrac{9}{9}-\dfrac{1}{9}+.........+\dfrac{2500}{2500}-\dfrac{1}{2500}\)
\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...........+1-\dfrac{1}{50^2}\)
\(A=\left(1+1+....+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)\)(\(49\) chữ số \(1\))
\(A=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{50^2}\right)\)
Lại có :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
Mà :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+............+\dfrac{1}{50^2}\right)>49-1\)\(=48\)
\(\Rightarrow A>48\) \(\rightarrowđpcm\)
Áp dụng tính chất : a^n - b^n chia hết cho a-b thì :
8^100-1 = (8^2)^50 - 1^50 chia hết cho 8^2-1 = 63
Mà 63 chia hết cho 9 => 8^100-1 chia hết cho 9
Tk mk nha