Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
= \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=\frac{8}{25}\)
Vậy \(A>\frac{8}{25}\left(\text{ĐPCM}\right)\)
Do \(n+1\)không chia hết cho 4 nên \(n=4k+r\in\left\{0;2;3\right\}\)
Ta có : \(7^4-1=2400\div100\)
Ta viết : \(7^n+2=7^{4k+r}+2=7^r\left(7^{4k}-1\right)+7^r+2\)
Vậy hai chữ số tận cùng của \(7^n+2\) cũng chính là hai chữ số tận cùng của \(7^r+2\left(r=0;2;3\right)\) nên chỉ có thể \(03;51;45\)theo tính chất 5 thì rõ ràng \(7^n+2\) không thể là số chính phương khi n không chia hết cho 4
Do n+1 không chia hết cho 4 nên n=4k + r \(r\in\left\{0;2;3\right\}\)
Ta có : \(7^4-1=2400:100\)
Ta viết:\(7^n+2=7^{4k+r}+2=7^r\left(7^{4k}-1\right)+7^r+2\)
Vậy hai chữ số tận cùng của 7^n+2 cũng chính là hai chữ số tận cùng của 7^r+2 (r=0;2;3) nên chỉ có thể 03,51,45 theo tính chất 5 thì rõ ràng 7^n+2 không thể là số chính phương khi n không chia hết cho 4
12+5x chia hết cho 4+x
4+x+4x+8 chia hết 4+x
4x+8 chia hết cho 4+x
8x+4 chia hết cho 4+x
8 chia hết cho 4+x
4+x thuộc ước của 8.
bài 1 bạn kia giải rồi nha , mình giải bài 2
3x + 5y ⋮ 7
<=> 3x + 12y - 7y ⋮ 7
<=> 3(x + 4y) - 7y ⋮ 7
Vì 7y ⋮ 7 . Để 3(x + 4y) - 7y ⋮ 7 <=> 3(x + 4y) ⋮ 7
Mà 3 ko chia hết 7 => x + 4y ⋮ 7 ( đpcm )
nói gì kì thế ?