Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bpt <=> 4a^3+4b^3 >= a^3+b^3+3ab.(a+b)
<=> 4a^3+4b^3-a^3-b^3-3ab.(a+b) >= 0
<=> 3a^2+3b^2-3ab.(a+b) >= 0
<=> a^3+b^3-ab.(a+b) >= 0
<=> (a+b).(a^2-ab+b^2) - ab.(a+b) >= 0
<=> (a+b).(a^2-ab-b^2-ab) >= 0
<=> (a+b).(a-b)^2 >= 0 ( đúng với mọi a,b > 0 )
=> ĐPCM
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow2\left(a+b\right)\left(a^2-ab+b^2\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow2\left(a^2-ab+b^2\right)\ge a^2+b^2\)
\(\Rightarrow2a^2-2ab+2b^2\ge a^2+b^2\)
\(\Rightarrow\left(a^2+b^2-2ab\right)+a^2+b^2\ge a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét : a^3+b^3-ab.(a+b)
= (a+b).(a^2-ab+b^2)-ab.(a+b)
= (a+b).(a^2-2ab+b^2)
= (a+b).(a-b)^2 >= 0 ( vì a;b > 0 )
=> a^3+b^3 >= ab.(a+b)
<=> (a+b)^3 = a^3+b^3+3ab.(a+b) < = a^3+b^3+3a^3+3b^3 = 4a^3+4b^3
Tương tự ........
=> (a+b)^3 + (b+c)^3 + (c+a)^3 < = 8a^3+8b^3+8c^3 = 8.(a^3+b^3+c^3)
=> ĐPCM
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
*học ngu chỉ làm được câu b. lười quá nên làm tắt*
Biến đổi thành
4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0
xét 4(a3+b3)-(a+b)3 =(a+b)[4(a2-ab+b2)-(a+b)2]
=3(a+b)(a-b)2 >=0
tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)
=> đpcm
đẳng thức xảy ra khi a=b=c
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Áp dụng BĐT AM-GM:
\(a^3+b^3+b^3\geq 3ab^2\)
\(a^3+a^3+b^3\geq 3a^2b\)
\(\Rightarrow 3(a^3+b^3)\geq 3ab(a+b)\)
\(\Leftrightarrow 4(a^3+b^3)\geq a^3+b^3+3ab(a+b)=(a+b)^3\)
Tương tự:
\(\left\{\begin{matrix} 4(b^3+c^3)\geq (b+c)^3\\ 4(c^3+a^3)\geq (c+a)^3\end{matrix}\right.\)
Cộng theo vế:
\(8(a^3+b^3+c^3)\geq (a+b)^3+(b+c)^3+(c+a)^3\)
Do đó ta có đpcm
Dấu bằng xảy ra khi a=b=c
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)
\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)
và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)
Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)
Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
\(\Leftrightarrow4\left(a^3+b^3\right)-\left(a+b\right)^3\ge0\)
\(\Leftrightarrow4a^3+4b^3-a^3-3a^2b-3ab^2-b^3\ge0\)
\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)