
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Nó là 37n + 2 + 16n - 1 + 23n chia hết cho 7
Hay là 37n + 2 + 16n - 1 + 23n chia hết cho 7


23a.Ta có : n+2 / n-3 = n-3+5 / n-3 = n-3 / n-3 + 5 / n-3 .Vì n-3 chia hết cho n-3 nên để n+2 chia hết cho n-3 thì 5 chia hết cho n-3 => n-3 = -5;-1;1;5 => n = -2;2;4;8.
23b.Ta có : 2n-7 / n-1 = 2n-2-5 / n-1 = 2n-2 / n-1 - 5/ n-1 .Vì 2n-2 = 2(n-1) chia hết cho n-1 nên để 2n-7 chia hết cho n-1 thì 5 chia hết cho n-1 => n-1 = -5;-1;1;5 => n = -4;0;2;6.
24a.
x+3 | -13 | -1 | 1 | 13 |
2y-1 | -1 | -13 | 13 | 1 |
2y | 0 | -12 | 14 | 2 |
x | -16 | -4 | -2 | 10 |
y | 0 | -6 | 7 | 1 |
Vậy (x;y) = (-16;0);(-4;-6);(-2;7);(10;1) thỏa mãn (x+3)(2y-1) = 13
24b.
x-2 | -11 | -1 | 1 | 11 |
xy+1 | -1 | -11 | 11 | 1 |
xy | -2 | -12 | 10 | 0 |
x | -9 | 1 | 3 | 13 |
y | -12 | 0 |
Vậy (x;y) = (1;-12);(13;0) thỏa mãn (x-2)(xy+1) = 11
23a.Ta có : n+2 / n-3 = n-3+5 / n-3 = n-3 / n-3 + 5 / n-3 .Vì n-3 chia hết cho n-3 nên để n+2 chia hết cho n-3 thì 5 chia hết cho n-3 => n-3 = -5;-1;1;5 => n = -2;2;4;8.
23b.Ta có : 2n-7 / n-1 = 2n-2-5 / n-1 = 2n-2 / n-1 - 5/ n-1 .Vì 2n-2 = 2(n-1) chia hết cho n-1 nên để 2n-7 chia hết cho n-1 thì 5 chia hết cho n-1 => n-1 = -5;-1;1;5 => n = -4;0;2;6.
24a.
x+3 | -13 | -1 | 1 | 13 |
2y-1 | -1 | -13 | 13 | 1 |
2y | 0 | -12 | 14 | 2 |
x | -16 | -4 | -2 | 10 |
y | 0 | -6 | 7 | 1 |
Vậy (x;y) = (-16;0);(-4;-6);(-2;7);(10;1) thỏa mãn (x+3)(2y-1) = 13
24b.
x-2 | -11 | -1 | 1 | 11 |
xy+1 | -1 | -11 | 11 | 1 |
xy | -2 | -12 | 10 | 0 |
x | -9 | 1 | 3 | 13 |
y | -12 | 0 |
Vậy (x;y) = (1;-12);(13;0) thỏa mãn (x-2)(xy+1) = 11

Bạn thấy: (n + 10) - (n + 7) = 3 là 1 số lẻ
=> n + 10 và n + 7 là 2 số khác tính chẵn lẻ
=> Tồn tại 1 số chia hết cho 2
=> (n + 10).(n + 7) chia hết cho 2 (đpcm)

\(n^2+n+1=n\left(n+1\right)+1\)
Ta có: \(n\left(n+1\right)\)chẵn nên \(n\left(n+1\right)+1\)lẻ
Mà 4 chẵn nên \(n\left(n+1\right)+1\)không chia hết cho 4
Vậy \(n^2+n+1\)không chia hết cho 4

Để \(n^2+2n+7⋮n+2\)
\(\Rightarrow n\left(n+2\right)+7⋮n+2\)
Vì \(n\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)\Rightarrow n+2\in\left\{1;7\right\}\Rightarrow n\in\left\{-1;5\right\}\)
Để \(n^2+1⋮n-1\)
=> \(n^2-1+2⋮n-1\)
\(\Rightarrow\left(n^2-n+n-1\right)+2⋮n-1\)
\(\Rightarrow\left[n\left(n-1\right)+\left(n-1\right)\right]+2⋮n-1\)
=> (n - 1)(n + 1) + 2\(⋮n-1\)
Vì (n - 1)(n + 1) \(⋮n-1\)
=> 2\(2⋮n-1\Rightarrow n-1\inƯ\left(2\right)\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\)
Để \(n^2+2n+6⋮n+4\)
=> \(n^2+4n-2n-8+14⋮n+4\)
=> \(n\left(n+4\right)-2\left(n+4\right)+14⋮n+4\)
=> \(\left(n-2\right)\left(n+4\right)+14⋮n+4\)
Vì \(\left(n-2\right)\left(n+4\right)⋮n+4\)
=> \(14⋮n+4\Rightarrow n+4\inƯ\left(14\right)\Rightarrow n+4\in\left\{1;2;7;14\right\}\Rightarrow n\in\left\{-3;-2;3;10\right\}\)
Để n2 + n + 1 \(⋮n+1\)
=> \(n\left(n+1\right)+1⋮n+1\)
Vì \(n\left(n+1\right)⋮n+1\)
=> \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)\Rightarrow n+1=1\Rightarrow n=0\)