Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. a) Coi A = ab+1
A = 111...11(n chữ số 1) .10n + 5 .111...11(n chữ số 1) + 1
\(A= \frac {10^n - 1} {9} + 5 \frac { 10^n -1} {9}+1
\)
\(A= \frac {10^2n - 10^n + 5.10^n -5 + 9} {9}\)
\(A =\frac {10^{2n} + 4.10^n + 4} {9}\)
\(A =\frac {(10^n + 2)^2} {3^2}\)
\(A=(\frac{10^n+2} {3}) ^2\)
Vậy A là số chính phương (vì 10n+2 chia hết cho 3)
b)Ta thấy 16 = 1.15 + 1
1156 = 11.105 + 1
111556 = 111.1005 + 1
... 111...1555...56(n chữ số 1,n-1 chữ số 5) = 111...1(n chữ số 1).100...05(n-1 chữ số 0) +1 (phần a)
Vẫy các số hạng trong dãy trên đều là số chính phương
3a)(dấu * là nhân nhé)
Có ab+1
=11...1*100...05+1
=11...1*(33...35(n-1 chữ số 3)*3)+1
=33...3*33...35+1
=33...3*(33...34+1)+1
=33...3*33...34+(33...3+1)
=33...3*33...34+33...34(n-1 chữ số 3)
=33...34*(33...3+1)
=33...34*33...34(n-1 chữ số 3)
=(33...34)^2 là số chính phương
Số chính phương là số nguyên có căn bậc 2 là một số nguyên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số nguyên khác.
Công thức!
1) A=4*\(\frac{10^{2n}-1}{9}\) B=\(2\cdot\frac{10^{n+1}-1}{9}\) C=\(8\cdot\frac{10^n-1}{9}\)
đặt 10^n=X => A+B+C+7=(4*x^2-4+2*10*x-2+8x-8+63)/9=(4x^2+28x+49)/9
=> A+B+C+7=\(\frac{\left(2x+7\right)^2}{3^2}\)
2) = 4mn((m^2-1)-(n^2-1))=4mn(m+1)(m-1)-4mn(n-1)(n+1)
mà m,n nguyên => m-1,m,m+1 và n-1,n,n+1 là 3 số nguyên liên tiếp nên chia hết cho 6
do đó 4mn(m^2-n^2) chia hết 6*4=24
4.Nếu\(|x-1|=0\)
thì x = 1.=> lx+2l = 3 và lx+3l = 4.
=>lx-1l+lx+2l+lx+3l=0+3+4=7.
Nếu \(|x+2|=0\)
thì x=-2 =>lx-1l=3 và lx+3l=1.
=>lx-1l+lx+2l+lx+3l=0+3+1=4.
Nếu \(|x+3|=0\)
thì x=-3 =>lx-1l=4 và lx+2l=1.
=>lx-1l+lx+2l+lx+3l=5.
Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).
Lời giải:
Đặt \(\underbrace{111....1}_{n}=a\Rightarrow 9a+1=1\underbrace{00....0}_{n-1}=10^{n}\)
Khi đó:
\(\underbrace{33....3^2}_{n}+\underbrace{5...5}_{n-1}\underbrace{444...4^2}_{n}\)
\(=(\underbrace{333....3}_{n})^2+(\underbrace{55...5}_{n-1}.10^n+\underbrace{4444....4}_{n})^2\)
\(=(\underbrace{333....3}_{n})^2+\left(\frac{\underbrace{55...5}_{n}-5}{10}.10^n+\underbrace{4444....4}_{n}\right)^2\)
\(=(3a)^2+(\frac{5a-5}{10}.(9a+1)+4a)^2\)
\(=(3a)^2+(\frac{9a^2-1}{2})^2=9a^2+\frac{81a^4+1-18a^2}{4}\)
\(=\frac{81a^4+1+18a^2}{4}=\frac{(9a^2+1)^2}{4}=\left(\frac{9a^2+1}{2}\right)^2\) là số chính phương vì \(\frac{9a^2+1}{2}\in\mathbb{Z}\) )
Ta có đpcm.
Ribi Nkok Ngok, Khôi Bùi , Phùng Tuệ Minh, Nguyễn Thành Trương
Nguyen, Nguyễn Ngô Minh Trí, Akai Haruma
Help me!