\(3^{2^{4n+1}}+2⋮11\)với mọi n \(\inℕ\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
3 tháng 6 2021

Ta sẽ chứng minh bằng quy nạp

Xét n=0 ta có 

\(3^{2^{4n+1}}+2=3^{2^1}+2=11\text{ chia hết cho 11}\)

Giả sử điều trên đúng với n=k tức là \(3^{2^{4k+1}}+2\text{ chia hết cho 11hay }3^{2^{4k+1}}\equiv9mod\left(11\right)\)

Xét n=k+1

\(3^{2^{4k+5}}=3^{2^{4k+1}\times2^4}\equiv9^{2^4}mod11\left(\text{ do }3^{2^{4k+1}}\equiv9mod11\right)\)

mà \(9^{2^4}=9^{16}=3^{32}\equiv3^2mod11=9mod11\text{ Do }3^{30}\equiv1mod11\)

Vậy \(3^{2^{4k+1}}\equiv9mod11\Rightarrow3^{2^{4k+1}}+2\text{ chia hết cho 11}\)

Vậy theo nguyên lý quy nạp, ta có điều phải chứng minh

16 tháng 6 2017

Mình làm 1 cái, cái còn lại b làm tương tự

Ta có:

\(2^2\equiv1mod\left(3\right)\Rightarrow2^{2n}\equiv1mod\left(3\right)\Rightarrow2^{2n+1}\equiv2mod\left(3\right)\)

\(\Rightarrow2^{2n+1}=3t+2\)

Ta lại có:

\(2^3\equiv1mod\left(7\right)\Rightarrow2^{3t}\equiv1mod\left(7\right)\Rightarrow2^{3t+2}\equiv4mod\left(7\right)\)

\(\Rightarrow2^{3t+2}+3\equiv0mod\left(7\right)\)

\(\Rightarrow2^{2^{2n+1}}+3\equiv0mod\left(7\right)\)

Mà ta có:

\(2^{2^{2n+1}}+3>2^{2^{2.0+1}}+3=7\)

Vậy số đó là hợp số.

3 tháng 8 2016

Tôi cũng là của FC Real Madrid ở Hà Nam.

Chúng mình kết bạn nhé.hihi.

12 tháng 2 2019

Áp dụng Fermat nhỏ là xong nhé

20 tháng 9 2018

https://olm.vn/hoi-dap/tim-kiem?id=235207&subject=1&q=++++++++++Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+324n+1+2+++chia+h%E1%BA%BFt+cho+11,+v%E1%BB%9Bi+m%E1%BB%8Di+n%E2%88%88N+++++++++

Bạn xem thử đi câu 2 ý