K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HN
0
HN
16 tháng 6 2017
Mình làm 1 cái, cái còn lại b làm tương tự
Ta có:
\(2^2\equiv1mod\left(3\right)\Rightarrow2^{2n}\equiv1mod\left(3\right)\Rightarrow2^{2n+1}\equiv2mod\left(3\right)\)
\(\Rightarrow2^{2n+1}=3t+2\)
Ta lại có:
\(2^3\equiv1mod\left(7\right)\Rightarrow2^{3t}\equiv1mod\left(7\right)\Rightarrow2^{3t+2}\equiv4mod\left(7\right)\)
\(\Rightarrow2^{3t+2}+3\equiv0mod\left(7\right)\)
\(\Rightarrow2^{2^{2n+1}}+3\equiv0mod\left(7\right)\)
Mà ta có:
\(2^{2^{2n+1}}+3>2^{2^{2.0+1}}+3=7\)
Vậy số đó là hợp số.
3 tháng 8 2016
Tôi cũng là của FC Real Madrid ở Hà Nam.
Chúng mình kết bạn nhé.hihi.
NG
0
AK
1
HN
1
Ta sẽ chứng minh bằng quy nạp
Xét n=0 ta có
\(3^{2^{4n+1}}+2=3^{2^1}+2=11\text{ chia hết cho 11}\)
Giả sử điều trên đúng với n=k tức là \(3^{2^{4k+1}}+2\text{ chia hết cho 11hay }3^{2^{4k+1}}\equiv9mod\left(11\right)\)
Xét n=k+1
\(3^{2^{4k+5}}=3^{2^{4k+1}\times2^4}\equiv9^{2^4}mod11\left(\text{ do }3^{2^{4k+1}}\equiv9mod11\right)\)
mà \(9^{2^4}=9^{16}=3^{32}\equiv3^2mod11=9mod11\text{ Do }3^{30}\equiv1mod11\)
Vậy \(3^{2^{4k+1}}\equiv9mod11\Rightarrow3^{2^{4k+1}}+2\text{ chia hết cho 11}\)
Vậy theo nguyên lý quy nạp, ta có điều phải chứng minh