K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

là số chính hương lẻ nên(mod 8)=>2n chia hết cho 8=>n chia hết cho 4

2 tháng 4 2017

Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.

A=4444..444...888.....89

 (n số 4)           (n số 8)

mà 9 = 3\(^2\)

9 thỏa mãn điều kiện là một số chính phương

=> A là số chính phương

12 tháng 1 2016

Dao Thi Yen ko làm đc thì đừng có phá nhé

2 tháng 7 2016

Vì n2+2n+12 là SC nên ta có \(n^2+2n+12=m^2\) (m là số tự nhiên)

\(=>\left(n^2+2n+1\right)+11=m^2=>\left(n+1\right)^2+11=m^2\)

\(=>m^2-\left(n+1\right)^2=11=>\left[m-\left(n+1\right)\right].\left[m+\left(n+1\right)\right]=11\)

\(=>\left(m-n-1\right).\left(m+n+1\right)=11=1.11=11.1\)

vì m,n là các số tự nhiên nên \(m-n-1< m+n+1\)

=>\(\left(m-n-1\right).\left(m+n+1\right)=1.11\)

=> \(\hept{\begin{cases}m-n-1=1\\m+n+1=11\end{cases}=>\hept{\begin{cases}m-n=2\\m+n=10\end{cases}}}\)

Cộng vế với vế:

\(\left(m-n\right)+\left(m+n\right)=2+10=12=>2m=12=>m=6\)

Từ đó suy ra n=4

Vậy n=4 thì n2+2n+12 là SCP

2 tháng 7 2016

Đặt \(n^2+2n+12=a^2\Leftrightarrow\left(n+1\right)^{^2}+11=a^2\Leftrightarrow\left(n-a+1\right)\left(n+a+1\right)=-11\)

Do n và s là số tự nhien nên xét ước 11 rồi tìm n và a sau , sau đó kết luan n = 4

11 tháng 4 2021

Gọi số phải tìm là \(\overline{abcd}=n^2\)
nên số viết theo thứ tự ngược lại là \(\overline{dcba}=m^2\) với \(m,n\inℕ\)và m>n
Do \(1000\le\overline{abcd},\overline{dcba}\le9999\) nên \(1000\le m^2,n^2\le9999\)
Mà \(m^2,n^2\)là số chính phương và \(m,n\inℕ\)
\(\Rightarrow1024\le m^2,n^2\le9801\)

\(\Rightarrow32\le m,n\le99\)
Do \(\overline{dcba}⋮\overline{abcd}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\)
Đặt \(m=kn\forall k\inℕ^∗,k\ge2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
Ta có: \(m=kn\le99,n\ge32\)
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 \(\Rightarrow32kn\le99n\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Như vậy: \(k\in\left\{2;3\right\}\)
+Nếu k = 2 thì: dcba = 4.abcd
Theo a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với đc: d= 4 hoặc d =6
Với d=4: <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd
a chỉ có thể là 1 và d = 9. Khi đó: <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089

14 tháng 4 2021

thank you nha

a: \(M=\left(1+3^2+3^4+3^6\right)+...+3^{992}\left(1+3^2+3^4+3^6\right)\)

\(=820\left(1+...+3^{992}\right)⋮41\)

b: \(9M=3^2+3^4+...+3^{1000}\)

\(\Leftrightarrow8M=3^{1000}-1\)

hay \(M=\dfrac{3^{1000}-1}{8}\)

16 tháng 1 2016

lớp 6 chưa hok chính phương

DD
28 tháng 3 2021

Giả sử viết được số thỏa mãn. 

Tổng các chữ số của số đó là: \(1.1+2.2+3.3+...+9.9=285\)

số này chia hết cho \(3\)nhưng không chia hết cho \(9\).

Nên số viết ra cũng chia hết cho \(3\)nhưng không chia hết cho \(9\)(vô lí) 

(vì số chính phương chia hết cho \(3\)thì sẽ chia hết cho \(9\))

Do đó không tồn tại số thỏa mãn.

8 tháng 1 2016

hoặc n ={1;3;5;7;9;11;13;15;17;19................}

tích nha ,cả 2 n đó

mk nhanh nhất

8 tháng 1 2016

Ta có: 10 <= n <= 99

=> 20 <= 2n <= 198

=> 21 <= 2n + 1 <= 199

Mà 2n + 1 là 1 số chính phương lẻ

=> 2n + 1 \(\in\){25; 49; 81; 121; 169}

=> 2n \(\in\){24;48;80;120;168}

=> n \(\in\){12;24;40;60;84}

=> 3n \(\in\){36; 72; 120; 180; 252}

=> 3n + 1 \(\in\){37; 73; 121; 181; 253}

Mà 3n + 1 là số chính phương

=> 3n + 1 = 121 => n = 40