
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)

a)PT: \(x^2-2\left(m-1\right)x+2m-5=0\)
\(\Rightarrow\Delta=\left(-2\left(m-1\right)\right)^2-4.1.\left(2m-5\right)\\ =4m^2-16m+24=\left(2m-4\right)^2+8\ge8\left(\forall m\in R\right)\)
Vậy phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m.
p/s: phần (b) mình sẽ giúp bạn trả lời sau nha!
Do x1 là nghiệm của pt nên thay x1 vào pt ta có: x1^2-2(m-1)x1+2m-5=0 <=> x1^2-2mx1+2x1+2m-1-4=0 <=> x1^2-2mx1+2m-1=4+2x1. Tương tự với x2, ta được: x2^2-2mx2+2m-1=4-2x2. Do đó: (4-2x1).(4-2x2)<0. (Đến đây chắc bạn cx tự giải đc rroieieie)

Đề sai bạn ơi, bạn sửa lại giúp mình mình giải cho ^_^
Vì nếu m = 5 chẳng hạn, x^2 + 12 + 10 = 0 vô nghiệm
Chắc ý bạn là x^2 + 2x(m+1) +2m = 0 ?

\(x^2-\left(2m+1\right)x+m^2+m=0\)
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb: \(\left\{{}\begin{matrix}x_1=\frac{2m+1-1}{2}=m\\x_2=\frac{2m+1+1}{2}=m+1\end{matrix}\right.\)
\(-2< x_1< x_2< 4\Leftrightarrow-2< m< m+1< 4\)
\(\Rightarrow-2< m< 3\)
ta có \(2m^4+2m+1\)
\(=2m^4-2m^2+\dfrac{1}{2}+2m^2+2m+\dfrac{1}{2}\)
\(=\left(2m^4-2m^2+\dfrac{1}{2}\right)+\left(2m^2+2m+\dfrac{1}{2}\right)\)
\(=2\left(m^4-m^2+\dfrac{1}{4}\right)+2\left(m^2+m+\dfrac{1}{4}\right)\)
\(=2\left(m^4+2.\dfrac{1}{2}m^2+\dfrac{1}{4}\right)+2\left(m^2+2.\dfrac{1}{2}m+\dfrac{1}{4}\right)\)
\(=2\left(m^2-\dfrac{1}{2}\right)^2+2\left(m+\dfrac{1}{2}\right)^2\ge\forall m\) ( đpcm)
cái dòng cuối là \(\ge0\forall m\)
nhé, làm xót 