\(29^{2n}-140n-1⋮700\) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
13 tháng 3 2021

ta có bài toán đúng với n=1

giả sử đúng với n=k

xét n=k+1:

\(29^{2\left(k+1\right)}-140\left(k+1\right)-1\)

\(=841.29^{2k}-140k-141=700.29^{2k}+141.\left(29^{2k}-140k-1\right)+19600k\)

mà \(\hept{\begin{cases}700.29^{2k}⋮700\\140\left(29^{2k}-140k-1\right)⋮700\\19600⋮700\end{cases}}\)bài toán đúng với n=k+1

Vậy theo nguyên lý quy nạp ta chứng minh được bài toán

NV
24 tháng 9 2019

Ta có \(\left(2n\right)^2=4n^2>4n^2-1=\left(2n-1\right)\left(2n+1\right)\)

\(\Rightarrow\frac{1}{\left(2n\right)^2}< \frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(P_n^2=\frac{1^23^25^2...\left(2n-1\right)^2}{2^24^26^2...2n^2}< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3.3.5.5.7...\left(2n-1\right)\left(2n+1\right)}\)

\(P^2< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3^2.5^2...\left(2n-1\right)^2\left(2n+1\right)}=\frac{1}{2n+1}\)

\(\Rightarrow P< \frac{1}{\sqrt{2n+1}}\)

21 tháng 11 2017

2)

a) Ta có: \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;3\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}2n-1=1\Rightarrow n=1\\2n-1=3\Rightarrow n=2\end{matrix}\right.\)

Vậy n=1 hoặc n=2

b) Ta có: \(3n+2⋮n-1\)

\(\Rightarrow\left(3n-3\right)+5⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{1;5\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=5\Rightarrow n=6\end{matrix}\right.\)

Vậy n=2 hoặc n=6

21 tháng 11 2017

1. vì (2x-1)(y-1)=29 mà \(x,y\in N\)\(\Rightarrow\left\{{}\begin{matrix}2x-1>0\\y-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>1\end{matrix}\right.\)

ta có:\(\left(2x-1\right)\left(y-1\right)=29\Rightarrow2x-1=\dfrac{29}{y-1}\)

vì: \(x\in N\Rightarrow\dfrac{29}{y-1}\in N\)

\(\Rightarrow29⋮y-1\Rightarrow y\in\left\{2;30\right\}\)

với y=2 => x=15

với y=30 => x=1

21 tháng 9 2017

Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)

\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)

\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)

\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)

Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)

21 tháng 9 2017

2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)

18 tháng 8 2016

\(VP=8x^3-48x^2+58x-4x^2+24x-29\)

\(=2x\left(4x^2-24x+29\right)-\left(4x^2-24x+39\right)\)

\(=\left(2x-1\right)\left(4x^2-24x+29\right)\)

\(pt\Leftrightarrow\left(2x-1\right)\sqrt{2x-1}=\left(2x-1\right)\left(4x^2-24x+29\right)\)

\(\Leftrightarrow\left(2x-1\right)\left[\sqrt{2x-1}-4x^2+24x-29\right]=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\\sqrt{2x-1}-4x^2+24x-29=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\\sqrt{2x-1}=4x^2+24x-29=0\left(2\right)\end{array}\right.\)

Tới đây giải pt (2) ra 

 

 

 

18 tháng 8 2016

con x3 ở đâu thế

12 tháng 7 2017

Ta có: \(x\sqrt{1-y^2}=1-y\sqrt{1-x^2}\)(ĐK: \(-1\le x;y\le1\))

\(\Leftrightarrow x^2\left(1-y^2\right)=1+y^2\left(1-x^2\right)-2y\sqrt{1-x^2}\)

\(\Leftrightarrow x^2=1+y^2-2y\sqrt{1-x^2}\)

\(\Leftrightarrow y^2+1-x^2-2y\sqrt{1-x^2}=0\)

\(\Leftrightarrow\left(y-\sqrt{1-x^2}\right)^2=0\)

\(\Leftrightarrow y=\sqrt{1-x^2}\Leftrightarrow x^2+y^2=1\)(đpcm)

(*) cách khác: Áp dụng BĐT bunyakovsky:

\(M^2=\left(x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(2-x^2-x^2\right)\)

đặt \(x^2+y^2=k\left(k>0\right)\)thì ta luôn có \(k\left(2-k\right)\le1\)

bởi nó tương đương \(\left(k-1\right)^2\ge0\).

hay \(M\le1\).Mà M=1 nên chỉ xảy ra dấu = khi k=1 hay \(a^2+b^2=1\)

8 tháng 9 2018

dấu \(\Leftrightarrow\) thứ 2 là sao vậy

22 tháng 1 2018

\(2n+5⋮n-1\)

\(n-1⋮n-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+5⋮n-1\\2n-2⋮n-1\end{matrix}\right.\)

\(\Leftrightarrow7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}n-1=1\\n-1=7\\n-1=-1\\n-1=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\\n=8\\n=0\\n=-6\end{matrix}\right.\)

Vậy ...

22 tháng 1 2018

Thanks!!

6 tháng 9 2017

Ta có:

\(3^{n+2}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(3+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}\cdot4+2^{n+2}\cdot3\)

\(=3^n\cdot3\cdot2\cdot2+2^{n+1}\cdot3\cdot2\)

\(=3^n\cdot6\cdot2+2^{n+1}\cdot6\)

\(=6\left(3^n\cdot2+2^{n+1}\right)⋮6\)

Vậy \(3^{n+2}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)

NV
2 tháng 5 2019

\(9x^2+16y^2-144=0\Leftrightarrow\frac{x^2}{16}+\frac{y^2}{9}=1\) là pt chính tắc elip

Bài 2:

I là tâm đường tròn \(\Rightarrow I\) là trung điểm AB \(\Rightarrow I\left(3;5\right)\)

\(R=IA=\sqrt{1^2+2^2}=\sqrt{5}\)

Phương trình: \(\left(x-3\right)^2+\left(y-5\right)^2=5\)

\(\Leftrightarrow x^2+y^2-6x-10y+29=0\)