\(2^{2^{4n+1}}+7\) chia hết cho 11.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

\(A=7+7^2+7^3+7^4+.............+7^{4n}\)

\(\Leftrightarrow A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+........+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)+........+7^{4n-3}\left(1+7+7^2+7^3\right)\)

\(\Leftrightarrow A=7.400+7^5.400+...........+7^{4n-3}.400\)

\(\Leftrightarrow A=400\left(7+7^5+........+7^{4n-3}\right)⋮400\left(đpcm\right)\)

31 tháng 12 2017

Hỏi đáp Toán

8 tháng 3 2017

ae ơi trả lời giùm mk cái

4 tháng 1 2016

mấy bài này làm theo cách lớp 8 thì dễ 

13 tháng 10 2018

1;\(7^6+7^5-7^4=7^4\left(49+7-1\right)=7^4.55=7^4.5.11⋮11\)

3 tháng 9 2019

\(n^2+4n+3=n^2+2.n.2+2^2-1\)

\(=\left(n+2\right)^2-1\)

\(=\left(n+2-1\right).\left(n+2+1\right)\)

\(=\left(n-1\right).\left(n+3\right)⋮8\)

3 tháng 9 2019

Ta có n2+4n+3=(n+1)(n+3)

Vì n là số lẻ nên (n+1)và (n+3) là hai số tự nhiên chẵn liên tiếp

Do đó một trong hai số có một số chia hết cho 4 khi đó số còn lại chia hết cho 2

Vậy tích (n+1)(n+3) chia hết cho 8 và ta có điều phải chứng minh

4 tháng 4 2018

Ta có : 

\(A=7+7^2+7^3+7^4+...+7^{4n}\)

\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(A=7\left(1+7+49+343\right)+...+7^{4n-3}\left(1+7+49+343\right)\)

\(A=7.400+...+7^{4n-3}.400\)

\(A=400\left(7+...+7^{4n-3}\right)⋮400\)

Vậy \(A⋮400\)

Chúc bạn học tốt ~ 

4 tháng 4 2018

ta nhóm 4 số thành 1 nhóm

A = \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+....\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^n\right)\) +\(7^n\))

A = \(\left(1+7+7^2+7^3\right).7+\left(1+7+7^2+7^3\right).7^5+...\left(1+7+7^2+7^3\right).7^{4n-3}\)

A = \(\left(1+7+7^2+7^3\right).\left(7+7^5+...+7^{4n-3}\right)\)

A = \(400.\left(7+7^5+...+7^{4n-3}\right)\)

=> A \(⋮\)400