\(2^{2^{2n+1}}+3\)là hợp số (n\(\in\)N)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b1,

\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)

=>n4+n3+n2+n+1=(n+1)4<=>n=0

nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải

16 tháng 6 2017

Mình làm 1 cái, cái còn lại b làm tương tự

Ta có:

\(2^2\equiv1mod\left(3\right)\Rightarrow2^{2n}\equiv1mod\left(3\right)\Rightarrow2^{2n+1}\equiv2mod\left(3\right)\)

\(\Rightarrow2^{2n+1}=3t+2\)

Ta lại có:

\(2^3\equiv1mod\left(7\right)\Rightarrow2^{3t}\equiv1mod\left(7\right)\Rightarrow2^{3t+2}\equiv4mod\left(7\right)\)

\(\Rightarrow2^{3t+2}+3\equiv0mod\left(7\right)\)

\(\Rightarrow2^{2^{2n+1}}+3\equiv0mod\left(7\right)\)

Mà ta có:

\(2^{2^{2n+1}}+3>2^{2^{2.0+1}}+3=7\)

Vậy số đó là hợp số.

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath