Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
\(A=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)
\(A=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)
\(A=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+...+2^{57}\cdot\left(1+2+2^2+2^3\right)\\ =\left(1+2+2^2+2^3\right)\cdot\left(2+2^5+...+2^{57}\right)\\ =15\cdot\left(2+2^5+...+2^{57}\right)⋮15\)
+A=\(2+2^2+2^3+...+2^{60}\)
+A=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
+A=\(2.\left(1+2\right)+2^3.\left(1+2\right)+..+2^{59}.\left(1+ 2\right)\)
+A=\(2.3+2^3.3+..+2^{^{ }59}+3\)
=>A chia hết cho 3
Mấy câu sau thì nhóm 3,4 là Ok.
Mình nghĩ là làm như vậy, các bạn thấy thế nào?
Ta có:B=\(2+2^2+...........+2^{30}\)
\(=\left(2+2^2+2^3+2^4+2^5+2^6\right)+.........+\left(2^{25}+2^{26}+2^{27}+2^{28}+2^{29}+2^{30}\right)\)
\(=2\left(1+2+2^2+2^3+2^4+2^5\right)+.........+2^{25}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+2^7.63+........+2^{25}.63\)
\(=\left(2+2^7+...+2^{25}\right).63\) chia hết cho 21
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)
\(\Rightarrow A⋮3\)
\(A=2+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+...+2^{58}.7\)
\(A=7.\left(2+...+2^{58}\right)\)
\(\Rightarrow A⋮7\)
\(A=2+2^2+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2+2^3\right)+...+2^{57}.\left(1+2+2^2+2^3\right)\)
\(A=2.15+...+2^{57}.15\)
\(A=15.\left(2+...+2^{57}\right)\)
\(\Rightarrow A⋮15\)
a, chứng minh rằng : nếu (ab+cd+eg) \(⋮\)11 thì abcdeg \(⋮\)11
abcdeg=10000.ab+100.cd+eg=9999.ab+99.cd+(ab+cd+eg)
Vì 9999.ab chia hết cho11,99.cd chia hết cho 11 và ab+cd+ag chia hết cho 11
=> abcdeg chia hết cho 11(đcpcm)
A = 21 + 22 + 23 + ..... + 259 + 260
A = ( 21 + 22 + 23 ) + ... + ( 258 + 259 + 260 )
A = 21 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22 )
A = 21 . 7 + ... + 258 . 7 \(⋮\)7
Vậy A \(⋮\) 7
\(2+2^2+2^3+...+2^{60}=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3\left(2+2^3+...+2^{59}\right)\) chia hết cho 3 (đpcm)
Bạn nhóm các số hạng để chứng minh chia hết cho 7;15 cũng tương tự mình làm ở trên nhé :)