Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(2n+2021;2n+2023)
=>2n+2023-2n-2021 chia hết cho d
=>2 chia hết cho d
mà 2n+2021 ko chia hết cho 2
nên d=1
=>ĐPCM
Gọi d=ƯCLN(2n+2021;2n+2023)
=>2n+2023-2n-2021 chia hết cho d
=>2 chia hết cho d
mà 2n+2021 ko chia hết cho 2
nên d=1
=>ĐPCM
Hôm nay olm sẽ hướng dẫn các em dùng phương pháp phản chứng chứng minh bài này trong một nhạc.
Giả sử p + 2023 là số nguyên tố ⇒ p phải là số chẵn
⇒ p = 2 (vì p là số nguyên tố)
⇒ p + 4 = 2 + 4 = 6 (là hợp số trái với đề bài)
Vậy điều giả sử là sai hay với p; p + 4 đồng thời là số nguyên tố thì
p + 2023 là hợp số (đpcm)
Giả sử p + 2023 là số nguyên tố ⇒ p phải là số chẵn
⇒ p = 2 (vì p là số nguyên tố)
⇒ p + 4 = 2 + 4 = 6 (là hợp số trái với đề bài)
Vậy điều giả sử là sai hay với p; p + 4 đồng thời là số nguyên tố thì
p + 2023 là hợp số (đpcm)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
a,A= { x \(\in\) Z/ -1945 < x \(\le\) 2023}
A = { -1944; -1943; -1942; -1941;... ......;2020; 2021; 2022; 2023}
b, Tổng các phần tử có trong tập hợp A là:
B = -1944 + ( -1943) + (-1942 ) + (-1941) +....+ 2020 + 2021 + 2022 + 2023
Các cặp số đối nhau có trong tổng B là 1944 cặp mà hai số đối nhau có ytoongr bằng 0 vậy tổng B là:
B = 0 x 1944 + 1945 + 1946 +....+ 2020+2021+2022 + 2023
B = 0 + (2023+1945).{ ( 2023 - 1945 ) : 1 + 1} : 2
B = 156736
Bài 2 : CM hai số 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau \(\forall\) n \(\in\) N
Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d . Theo bài ra ta có :
\(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
trừ vế cho vế ta được : 60n + 5 - (60n +4) \(⋮\) d
60n + 5 - 60n - 4 \(⋮\) d
1 \(⋮\) d
\(\Rightarrow\) d = 1
Ước chung lớn nhất của 12n + 1 và 30n + 2 là 1
Vậy 12n + 1 và 30n +2 là hai số nguyên tố cùng nhau (đpcm)
\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)
\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)
mà 2023^31+2<2023^32+2
nên A>B
Số nguyên tố luôn là 1 số lẻ.
Hai số nguyên tố cộng lại với nhau hay 2 số lẻ cộng lại với nhau luôn ra một số chẵn.
Mà 2023 là số lẻ nên sự kiện hai số nguyên tố cộng lại với nhau bằng 2023 là không thể xảy ra.
2023+2022+2021+....+x=2023
2022+2021+....+x=2023-2023
2022+2021+...+x=0
=> x=-2022-2021-....(khoảng này ko biết kết thúc ở đâu nên ko tính đc)
Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)
\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)
=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)
=>\(3A=2^{2024}-1\)
mà \(2\cdot B=2^{2024}\)
nên 3A và 2B là hai số tự nhiên liên tiếp
M=(1/5+1/5^2+1/5^3+...+1/5^2023) + 1/5x(1/5+1/5^2+1/5^3+...+1/5^2022) + ... + 1/5^2021x(1/5+1/5^2) + 1/5^2022x1/5
Xét biểu thức N=1/5+1/5^2+1/5^3 + ... + 1/5^k (K>0, k thuộc Z)
=> 5N=1+1/5+1/5^2+1/5^3+...+1/5^(k-1)
=> 4N= 5N - N =1 - 1/5^k
=> 1/5+1/5^2+1/5^3 + ... + 1/5^k = 1/4x(1-1/5^k)
Thay vào biểu thức M, ta có:
M= 1/4x(1-1/5^2023) + 1/5x1/4x(1-1/5^2022) + ... + 1/5^2021x1/4x(1-1/5^2) + 1/5^2022x1/4x(1-1/5)
=> 4M = (1+1/5+1/5^2+...+1/5^2022) - 2023/5^2023
=> 4M = 5/4x(1-1/5^2023)-2023/5^2023 < 5/4
=> M < 5/16 < 1/3
Vậy M < 1/3 [ vượt chỉ tiêu nhé =)) ]