K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

Đặt \(A=\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)

\(=\left(1+2+4+8+16\right)+2^5.\left(1+2+4+8+16\right)+...+2^{5n-5}.\left(1+2+4+8+16\right)\)

\(=31+2^5.31+...+2^{5n-5}.31\)

\(=31.\left(1+2^5+...+2^{5n-5}\right)\text{ chia hết cho 31}\)

=> A chia hết cho 31 (đpcm).

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

2 tháng 2 2016

Đặt A = 20 + 21 + 22 + 23 + 24 + 25 + ..... +25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1

=> A = ( 20 + 21 + 22 + 23 + 24 + 25 ) + ..... + ( 25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1 )

=> A = 20 ( 1 + 21 + 22 + 23 + 24 ) + ..... + 25n-6 ( 1 + 21 + 22 + 23 + 2)

=> A = 1.31 + 25 .31 + ..... + 25n-6.31 

=> A = 31.( 1 + 25 + ..... + 25n-6 )

Vì 31 ⋮ 31 => A ⋮ 31 ( đpcm )

2 tháng 2 2016

\(\text{Đặt }A=\left(2^0+2^1+2^2+2^3+2^4\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)

\(=\left(1+2 +4+8+16\right)+...+2^{5n-5}.\left(2^0+2^1+2^2+2^3+2^4\right)\)

\(=31+...+2^{5n-5}.31\)

\(=31.\left(1+...+2^{5n-5}\right)\text{chia hết cho 31}\left(đpcm\right)\)

a)

    Một số chia hết cho 2 và 5 thì số đó chia hết cho 10.

   Ta có : 

       n2 + n + 1 = n . ( n + 1 ) + 1

Mà :  n . ( n + 1 ) ko bao giờ có chữ số tận cùng là 9

=>  n . ( n + 1 ) + 1 ko bao h có chữ số tận cùng = 0

 => n . ( n + 1 ) + 1 hay n2 + n + 1 ko chia hết cho 2 và 5

b) 

      Ta có : 

       Dãy trên có số các lũy thừa là : 

                  ( 100 -1 ) : 1 + 1 = 100 ( số )

     Có : 100 \(⋮\)4  => có thể chia dãy trên thành các nhóm, mỗi nhóm 4 lũy thừa.

Ta có : 

  A = ( 2 + 22 + 23 + 24 ) +...+ ( 297 + 298 + 299 + 2100 )

=> A = 2 . ( 1 + 2 + 22 + 23 ) + ... + 297 . ( 1 + 2 + 22 + 23 )

=> A = ( 1 + 2 + 22 + 23 ) . ( 2 +...+ 297 )

=> A = 15 . ( 2 +... + 297 )

=> A \(⋮\)15

=> A chia hết cho 3 và 5

=> ĐPCM