\(19.8^n+17\)là hợp số \(\left(n\ge1\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

Nếu n = 2k ( k Z+) thì
19.82k + 17 = 18.82k + ( 1 + 63)k +( 18 – 1) đồng dư với 0 theo mod3
Nếu n = 4k + 1 thì 
19.84k+1 + 17 = 13.84k+1 + 6.8.642k + 17 = 13.84k+1+ 39.642k + 9(1 – 65)2k + (13+4) đồng dư với 0 (mod13) 
Nếu n = 4k + 3 thì 
19.84k+3 + 17 = 15.84k+3 + 4.83.642k + 17
= 15.84k+3 + 4.510.642k + 4.2.(1 – 65)2k + (25 – 8) đồng dư với 0(mod5)
Như vậy với mọi n Z+ số 19.8n + 17 là hợp số

14 tháng 2 2018

Gọi 2n -1,2n ,2n+1 là 3 số nguyên liên tiếp (n>2)

Ta có 2n-1 là số nguyên tố lớn hơn 3

=>2n-1 không chia hết cho 3

2n không chia hết cho 3 (2n -1,2n ,2n+1 là 3 số nguyên liên tiếp)

=> 2n+1 chia hết cho3 (1)

Vì n>2 => 2 n+1 > 3 (2)

Từ (1) và (2) => 2 n+1 là hợp số(đpcm)

24 tháng 3 2018

\(2^n-1\) là số tự nhiên >2 nên \(2^n-1\) có 3 dạng

\(3k;3k+1;3k+2\) \(\left(k\in Nsao\right)\)

Với 2n\(2^n-1=3k,2^n=1\) là số tự nhiên \(\Rightarrow2^n-1=3\Rightarrow n=2\left(loại\right)\) vì n>2

Với \(2^n-1=3k+1\Rightarrow2^n=3k+2\)

Ta có : \(2^n+1=3k+2+1=3k+3=3\left(k+1\right)\)

\(3:3\Rightarrow3\left(k+1\right)⋮3\) hay \(2^n+1⋮3\)

Với \(2^n-1=3k+2\Rightarrow2^n=3\) (loại) vì \(2⋮̸3\Rightarrow2^n⋮̸3\)\(3k⋮3\)

Vậy ...............

24 tháng 3 2018

Ta có :

\(\left(2^n-1\right)\cdot2^n\left(2^n+1\right)⋮3\left(tích3sốtựnhiênliêntiếp\right)\)\(Mà\left\{{}\begin{matrix}2^n+1⋮̸3\left(sốnguyêntố\right)\\2^n⋮̸3\end{matrix}\right.\)

\(2^n-1⋮3\)

⇒Đpcm

22 tháng 7 2018

a/ \(\left(2^2\right)^{\left(2^2\right)}=4^4=256\)

b/ \(\dfrac{\left(-\dfrac{5}{7}\right)^{n+1}}{\left(-\dfrac{5}{7}\right)^n}=\dfrac{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{5}{7}\right)}{\left(-\dfrac{5}{7}\right)^n}=-\dfrac{5}{7}\)

c/ \(\dfrac{8^{14}}{4^{12}}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}=\dfrac{2^{42}}{2^{24}}=2^{18}\)

22 tháng 7 2018

thank you

2 tháng 8 2017

Mệnh đề đúng với \(n=1\)\(4^1+6.1-1=9\).

- Giả sử \(\left(4^k+6k-1\right)⋮9\). Ta chứng minh:

\(\left[4^{k+1}+6\left(k+1\right)-1\right]⋮9\)

Ta có:

\(4^{k+1}+6\left(k+1\right)-1\)

\(=4.4^k+6k+6-1\)

\(=\left(4^k+6k-1\right)+3.4^k+6\)

\(=\left(4^k+6k-1\right)+3\left(4^k+2\right)\)

Đặt \(A=4^k+6k-1\)\(B=3\left(4^k+2\right)\)

Theo giả thiết quy nạp thì \(A⋮9\)

Do \(4:3=1\) (dư 1) \(\Rightarrow4^k:3\)\(1\Rightarrow\left(4^k+2\right)⋮3\Rightarrow B⋮9\)

Lại có \(\left[4^{k+1}+6\left(k+1\right)-1\right]⋮9\)

Vậy mệnh đề đúng với mọi \(n\in N;n\ge1\)

2 tháng 8 2017

Hồng Phúc Nguyễn Phạm Ngân Hà

13 tháng 12 2015

\(\frac{\left(-\frac{5}{7}\right)^{n+1}}{\left(-\frac{5}{7}\right)^n}=\frac{\left(-\frac{5}{7}\right)^n.\left(-\frac{5}{7}\right)}{\left(-\frac{5}{7}\right)^n}=\frac{-\frac{5}{7}}{1}=-\frac{5}{7}\)

10 tháng 12 2015

\(\frac{-5}{7}\)

5 tháng 11 2016

a ) \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)=\frac{1}{4}\left(1+\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{2}\)

b )

\(B=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{3^2-1}+\frac{1}{5^2-1}+...+\frac{1}{\left(2n+1\right)^2-1}\)

\(=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n+2}\right)< \frac{1}{4}\).

23 tháng 7 2018

a) \(\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^{n-1}}\)

\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n:\left(-\dfrac{5}{7}\right)}\)

\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{7}{5}\right)}\)

\(=\dfrac{1}{\left(-\dfrac{7}{5}\right)}\)

\(=1.\left(-\dfrac{5}{7}\right)\)

\(=-\dfrac{5}{7}\)

b) \(\dfrac{\left(-\dfrac{1}{2}\right)^{2n}}{\left(-\dfrac{1}{2}\right)^n}\)

\(=\dfrac{\left(-\dfrac{1}{2}\right)^n.\left(-\dfrac{1}{2}\right)^n}{\left(-\dfrac{1}{2}\right)^n}\)

\(=\left(-\dfrac{1}{2}\right)^n\)

24 tháng 1 2019

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)

Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)

\(=k\left(k+1\right)+1\left(k+1\right)\)

\(=k^2+k+k+1=k^2+2k+1\)

Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)

\(\Rightarrow k^2+2k>k^2\)

Ta có : \(k^2< k^2+2k< k^2+2k+1\)

hay : \(k^2< k^2+2k< \left(k+1\right)^2\)

Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp

\(\Rightarrow k^2+2k\)không phải là số chính phương

24 tháng 1 2019

\(Giai\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(\text{Đặt:n2+3n=t}\)

\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)

Đến đây cậu đã làm được chưa ạ?

25 tháng 10 2017

} \leq \sqrt{27}.\frac{(\frac{x}{3}+\frac{x}{3}+\dfrac{x}{3}+2r-x)^{2}}{16}= = \sqrt{27}.\frac{r^2}{4}$  chinh latex