\(⋮\)5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

Bạn tìm chữ số tận cùng của tổng trên
ta có 192004=94.501=(...1)501192004=94.501=(...1)501  có tận cùng là 1
20031890=20034.472.20032=(...1).(...9)20031890=20034.472.20032=(...1).(...9)
\Rightarrow192004+20031890=(...10)192004+20031890=(...10) chia hết cho 5
mà 5200352003 chia hết cho 5  đpcm

27 tháng 10 2015

a)Ta thấy: 5 đồng dư với 1(mod 2)

=>52003 đồng dư với 12003(mod 2)

=>52003 đồng dư với 1(mod 2)

=>52003=2k+1

=>\(19^{5^{2003}}=19^{2k+1}\)

a)Ta thấy: 5 đồng dư với 1(mod 2)

=>52003 đồng dư với 12003(mod 2)

=>52003 đồng dư với 1(mod 2)

=>52003=2k+1

Mà 19 đồng dư với 9(mod 10)

=>19 đồng dư với -1(mod 10)

=>192 đồng dư với (-1)2(mod 10)

=>192 đồng dư với 1(mod 10)

=>(192)k đồng dư với 1k(mod 10)

=>192k đồng dư với 1(mod 10)

=>192k.19 đồng dư với 1.9(mod 10)

=>192k+1 đồng dư với 9(mod 10)

=>\(19^{5^{2003}}\) đồng dư với 9(mod 10)

=>\(19^{5^{2003}}\)có tận cùng là 9

19 tháng 2 2017

\(19^{5^{2003}}=\left(...9\right)^{2003}=\left(...9\right)^{2000}.\left(...9\right)^3\)

\(=\left(...1\right).729=\left(...9\right)\)

Vậy.....

\(8^{2004}=8^{2000}.8^4=\left(...6\right).\left(...6\right)=\left(...6\right)\)

Vậy......

\(7^{2003}=7^{2000}.7^3=\left(...1\right).343=\left(...3\right)\)

Vậy......

12 tháng 7 2017

Ta có:

\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\)    -     \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)

Đơn giản đi hết ta sẽ còn:

\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

2.

Ta có: 

Số khoảng cách của các số trong dãy là  23 = 8

=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.

=> 3025 . 8 = 24200

26 tháng 3 2017

 \(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\) + 35 = \(^{2^5}\)                                                                                

\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\)          = -3

\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)\) = 0

\(\left(\frac{x+1}{2004}+\frac{2004}{2004}\right)+\left(\frac{x+2}{2003}+\frac{2003}{2003}\right)+\left(\frac{x+3}{2002}+\frac{2002}{2002}\right)\)= 0

\(\left(\frac{x+2005}{2004}\right)+\left(\frac{x+2005}{2003}\right)+\left(\frac{x+2005}{2002}\right)\)= 0

\(\left(x+2005\right).\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\)           = 0

\(\left(x+2005\right)\)                                                               = 0 \(:\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\)  

\(\left(x+2005\right)\)                                                               = 0

\(x\)                                                                                    = 0-2005

\(x\)                                                                                    = -2005