Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,
(434)10. 433- (174)4 . 17
(434)10 co chu so tan cung la 1
433 co chu so tan cung la 7
(174)4 co chu so tan cung la 1
17 co chu so tan cung la 7
suy ra 4343-1717 co tan cung la chu so 0 chia het cho10
vay hieu 4343-1717 chia het cho 10
Chứng minh \(S=3+3^2+...+3^{100}⋮120\)
Ta có \(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=120+...+3^{96}.120⋮120\)
Vậy \(S=3+3^2+...+3^{100}⋮120\)
Chứng minh \(P=36^{36}-9^{10}⋮45\)
Cái này dùng đồng dư thức
\(P=36^{36}-9^{10}\equiv1-4^{10}\equiv1-16^5\equiv1-10\equiv0\left(mod5\right)\)
Mà dễ thấy P chia hết cho 9 và \(\left(9;5\right)=1\)
Vậy P chia hết cho 45
Chứng minh \(M=7^{1000}-3^{1000}⋮10\)
Ta có \(M=7^{1000}-3^{1000}=\left(2401\right)^{250}-\left(81\right)^{250}\equiv1-1\equiv0\left(mod10\right)\)
Vậy M chia hết cho 10
A= 75. (42004+.......+4+1) + 25
= 25 . (4-1) . (42004+.....+4+1) + 25
= 25.[4.(42004+......+4+1) - (42004+......+4+1)] + 25
= 25.[ (4+ 42+........+ 42005 ) - ( 1+ 4 +........+42004)] + 25
= 25.(42005 - 1) + 25
= 25. 42005- 25 +25
= 25. 42005
= (25. 4). 42004
= 100. 22004
Mà 100 chia hết cho 100 => 100. 22004 chia hết cho 100
=> A chia hết cho 100 ( đccm)
A có 2001 số hạng,chia làm 667 nhóm,mỗi nhóm 3 số liên tiếp từ trái sang phải
A=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^1998+3^1999+3^2000)
A=13+3^3.(1+3+3^2)+....+3^1998.(1+3+3^2)
A=13+3^3.13+...+3^1998.13
A=13.(1+3^3+...+3^1998) chia hết cho 13
Vậy A chia hết cho 13
Chúc bạn học tốt,ùng hộ mình ha^^
Bạn ơi,3^1001 chứ ko phải 3^1000 như ở đề bài nha^^
Ta có: A = 1 + 3 + 32 + 33 +...+31999 + 32000
=> A = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 + 36 ) + ( 37 + 38 + 39 + 310 ) + ... + ( 31997 + 31998 + 31999 + 32000)
=> A = 13 + 33 . ( 1 + 3 + 32 ) + 37 . ( 1 + 3 + 32 ) + ... + 31997 . ( 1 + 3 + 32 )
=> A = 13 + 33 . 13 + 37 . 13 + ... + 31997 . 13
=> A = 13 . ( 1 + 33 + 37 + ... + 31997 )
=> A chia hết cho 13
Vậy A chia hết cho 13
\(12^{2004}-2^{1000}\)=\(\left(12^4\right)^{501}-\left(2^4\right)^{250}\)
=\(\left(...6\right)^{501}-\left(...6\right)^{250}\)
= \(.....0\)chia hết cho 10 (ĐPCM)