Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1990.1990}\)
\(< \frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\left(\text{đpcm}\right)\)
Bài làm :
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1990.1990}< \frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}=\frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}\)
\(\text{Vì : }\frac{1}{1990}>0\Rightarrow\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
=> Điều phải chứng minh
Ta có: 1/2 ^ 2+1/3 ^ 2+1/4 ^ 2+...+1/1990 ^ 2
= 1/4 + 1/(3 * 3)+1/(4 * 4)+...+ 1/(1990 * 1990)
< 1/4 + 1/(2 * 3) + 1/(3 * 4) +...+1/(1989 * 1990)
= 1/4 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/1989 - 1/1990
= 3/4 - 1/1990 < 3/4.
Vậy 1/2 ^ 2+1/3 ^ 2+1/4 ^ 2+...+1/1990 ^ 2 < 3/4 (đpcm)
\(\frac{1}{2^2}< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)\)
\(\frac{1}{3^2}< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)\)
\(\frac{1}{4^2}< \frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)\)
\(\frac{1}{5^2}< \frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}\right)\)
....
\(\frac{1}{1990^2}< \frac{1}{2}\left(\frac{1}{1989}-\frac{1}{1991}\right)\)
công hết lại: ra điều cần chứng minh
cho @ ...thêm cái nữa
\(\frac{1}{n^2}< \frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n-2}\right)\)
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\) < \(\frac{3}{4}\)
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
Vì \(\frac{1}{2^2}< \frac{3}{4}\)
\(\frac{1}{3^2}< \frac{3}{4}\)
...
\(\frac{1}{1990^2}< \frac{3}{4}\)
=> Tổng đó bé hơn \(\frac{3}{4}\)
\(\frac{1}{2^2}< \frac{1}{2}\left(1-\frac{1}{3}\right)\)
\(\frac{1}{1990^2}< \frac{1}{2}\left(\frac{1}{1989}-\frac{1}{1991}\right)\)
\(VP< \frac{1}{2}\left(1-\frac{1}{1991}\right)=\frac{1990}{2.1991}=\frac{995}{1991}< \frac{3}{4}\)
TA CÓ 1/2^2=1/4
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
1/100^2<1/99.100
=>1/2^2+2/3^2+.....+1/100^2<1/1.2+1/2.3+..+1/99.100
=1-99/100=99/100<1
\("!"\) là giai thừa đó bạn ạ .
\(VD:\) \(3!=1.2.3=6\)
\(4!=1.2.3.4=24\)