Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$
Lại có:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.
Ta có:\(S=\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\frac{1}{9}\)
\(>\left(\frac{1}{5}+\frac{1}{5}+\frac{1}{5}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\frac{1}{9}\)
\(=\frac{3}{5}+\frac{3}{8}+\frac{1}{9}=\frac{216+135+40}{360}=\frac{391}{360}>1\)
Lại có:\(S< \left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)+\left(\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\right)+\frac{1}{9}\)
\(=1+\frac{1}{2}+\frac{1}{9}\)
\(< 1+\frac{1}{2}+\frac{1}{2}=2\)
Vậy....
Ta có: 2=2
3=3
9=32
=> BCNN(2,3,9)=2.32=18
\(\Rightarrow\frac{1}{2}=\frac{1.9}{2.9}=\frac{9}{18}\)
\(\frac{1}{3}=\frac{1.6}{3.6}=\frac{6}{18}\)
\(\frac{1}{9}=\frac{1.2}{9.2}=\frac{2}{18}\)
\(\Leftrightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{9}\)\(=\frac{9}{18}+\frac{6}{18}+\frac{2}{18}=\frac{17}{18}\)
Mà \(\frac{17}{18}< 1< 2\)
=> \(\frac{17}{18}< 2\)=> ĐPCM
_HT_