Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hình vuông ABCD, M là 1 điểm nằm giữa B và C . Kẻ AN vuông góc vơi AM, AP vuông góc với MN. Gọi Q là giao điểm của AM với CD. C/m 1/AM^2+1/AQ^2 ko đổi5 khí M di cghuyeern trên BC
Nếu tính theo ngón tay thì 1+1= 2,có nghĩa là giơ 2 ngón trỏ và ngón giữa tạo thành hình chữ V
Mà V theo số la mã là 5
VẬY 1 + 1 = 5
HOK TOT
Câu hỏi này có một thời gian tôi cũng cố gắng đi tìm câu trả lời ! Rất hấp dẫn.
Để hiểu về vấn đề này, ta phải đi về tận cội nguồn sâu xa của toán học. Có lẽ tôi chỉ nói vắn tắt.
1+1=2. Đó chẳng qua là do sự hiểu biết của con người.
Nếu chúng ta nhìn bình thường thì chỉ thấy, oh, đơn giản 1+1=2, nhưng chúng ta nhìn theo kiểu này, +1 chính là phép biểu hiện số liền sau. Như vậy, 1+1 nghĩa là số liền sau số 1, n+1 nghĩa là số liền sau số n. Một cách nhìn vấn đề rất trực quan.
Nhà toán học đã đưa ra hệ tiên đề Peano gồm 4 tiên đề như sau:
Có một tập hợp N gồm các tính chất sau:
1/ Với mỗi phần tử x trong N có một phần tử, ký hiệu là S(x), trong N được gọi là phần tử kế tiếp của x
2/ Cho x và y trong N sao cho, nếu S(x)=S(y) thì x = y
3/ Có một phần tử trong N ký hiệu là 1 sao cho 1 không là phần tử kế tiếp của một tử nào trong N (nghĩa là không tồn tại x sao cho S(x)=1 )
4/ Cho U là tập con của N sao cho 1 thuộc U và S(x) thuộc U x thuộc U. Lúc đó U = N
Ta lưu ý rằng, các phép cộng, phép nhân trên N cũng chỉ là một ánh xạ từ NxN -> N
Với các định nghĩa trên, ta có thể xác định 2 là S(1), 3 là S(2), 4 là S(3) .........
Ta cũng có thể xác định phép cộng trên N như sau: n+1 = S(n), n+2=S(n+1)
Ta cũng có thể xác định phép nhân trên N như sau: 1.n = n, 2.n = n+n, ....
Và do đó việc 1+1=2 là do từ các tiên đề Peano mà có.
Lưu ý: Từ các tiên đề Peano, định nghĩa phép công, phép nhân, ta có thể CM các tính chất giao hoán, phân phối. Và đặc biệt, quan trọng nhất là: Tập N được định nghĩa như trên là duy nhất theo nghĩa song ánh (Nếp tồn tại tập M thỏa các tiên đề Peano, thì tồn tại song ánh từ N vào M)
giả sử \(10^n+18n-1⋮27\)
\(\Rightarrow10^n-1+18n⋮27\)
\(\Rightarrow999...9\) (n số 9) \(+18n⋮27\)
\(\Rightarrow9\left(111...1+2n\right)⋮27\)
\(\Rightarrow111...1+2n⋮3\)
ta có tổng các số của 111...1 (n số 1) bằng n và 2n có tổng các số là số dư khi 2n : 9. gọi số dư đó là \(k\Rightarrow2n=3x+2k\) \(\left(x\in N\right)\)
ta có: 111...1 = 3y + k \(\left(x\in N\right)\)
\(\Rightarrow2n+111...1=3\left(x+y\right)+3k=3\left(x+y+k\right)\)
\(\Rightarrow2n+111...1⋮3\)
\(\Rightarrow10^n+18n-9⋮27\) (đpcm)
1/x +1/y +1/z=1/x+y+z
<=>xy+yz+zx/xyz=1/x+y+z
<=>x^2y +xy^2+ 2xyz +y^2z +zx^2 +xyz +z^2x=0
<=>(x^2y +zx^2) +(xy^2 +2xyz +z^2x) +(y^2z +yz^2)=0
<=>x^2(y+z) +x(y+z)^2 +zy(y+z)=0
<=>(y+z)( x^2 +xy +xz zy)=0
<=>(y+z)[ x(x+y) +z(x+y) ]=0
<=>(y+z)(x+y)(x+z)=0
<=>x= -y : y= -z : z= -x
Vậy phương trình kia trở thành;
-1/y^2009 + 1/y^2009 +1/z^2009=1/ -y^2009 + y^2009 +z^2009
<=> 1/z^2009 = 1/z^2009
<=> z=z (luôn đúng)
1.
Đặt \(\sqrt[12]{a}=x\ge0\)
\(\Rightarrow VT=2^x+2^{x^3}\ge2\sqrt{2^{x+x^3}}\ge2\) (đpcm)
Dấu "=" xảy ra khi \(x=0\) hay \(a=0\)
2.
\(y=2^{x-1}+2^{3-x}\ge2\sqrt{2^{x-1+3-x}}=4\)
\(y_{min}=4\) khi \(x-1=3-x\Leftrightarrow x=2\)
Mình đã giải tại đây https://hoc24.vn/hoi-dap/question/169464.html
Giả sử tồn tại 1 số \(k>1\) sao cho \(u_k\) là số hữu tỉ
\(\Rightarrow u_k=\sqrt{1+2u_k.u_{k-1}}\Rightarrow u_k^2=1+2u_k.u_{k-1}\)
\(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}=u_{k-1}\)
Do \(u_k\) hữu tỉ \(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}\) hữu tỉ
\(\Rightarrow u_{k-1}\) hữu tỉ
Theo nguyên lý quy nạp, ta suy ra mọi số hạng trong dãy đều là số hữu tỉ
Nhưng \(u_2=1+\sqrt{2}\) là số vô tỉ (trái với giả thiết)
Vậy điều giả sử là sai hay với mọi \(k>1\) thì \(u_k\) luôn là số vô tỉ
Hay \(u_{2019}\) là số vô tỉ
anh có thể giúp em tính số hạng thứ 10 của dãy được không ạ
chịu thôi
x+1=D,D thuộc tập hợp số