Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(n=2k+1\)
\(\Rightarrow A=3^{2k+1}+1=3.9^k+1\)
Ta có: \(9^k\) chia cho 5 dư - 1 hoặc 1
\(\Rightarrow3.9^k\)chia 5 dư - 3 hoặc 3
\(\Rightarrow3.9^k+1\)chia 5 dư - 2 hoặc 4
\(\Rightarrow A\) không chia hết cho 5 nên A không chia hết cho \(10^{2016}\)
Xét \(n=2k\)
\(\Rightarrow A=3^{2k}+1=3^{2k}+1\)
Vì \(3^{2k}\)là số chính phương nên chia cho 4 dư 0 hoặc 1.
\(\Rightarrow A=3^{2k}+1\)chia cho 4 dư 1 hoặc 2.
\(\Rightarrow A\)không chia hết cho 4 nên A không chia hết cho \(10^{2016}\)
Ta thấy: 10 đồng dư với 1(mod 3)
=>10n đồng dư với 1n(mod 3)
=>10n đồng dư với 1(mod 3)
Lại có: 139 đồng dư với 1(mod 3)
=>10n-139 đồng dư với 1-1(mod 3)
=>10n-139 đồng dư với 0(mod 3)
=>10n-139 chia hết cho 3
=>ĐPCM
Xét 2 trường hợp
TH1: n chẵn
Mà 4 chẵn
=> n+4 chẵn chia hết cho 2
=> (n+1)(n+4) chia hết cho 2
TH2: n lẻ => n chia hai dư 1
Mà 1 chia 2 dư 1
=> n+1 chia hết cho 2
=> (n+1)(n+4) chia hết cho 2
Vậy với mọi số nguyên dương n thì (n+1)(n+4) chia hết cho 2 (Đpcm)