K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

Đặt M = 0,9999999999....
M = 0,9 + 0,09 + 0,009 +... 
\(\Leftrightarrow\)10M=9 + 0,9 + 0,09 +... 
\(\Leftrightarrow\)10M=9+M 
\(\Leftrightarrow\)9M=9 

\(\Leftrightarrow\)M=1

18 tháng 10 2015

1. 80^2−79.80+1601 = 80 . 80 - 79 . 80 + 1600 + 1
= 80 . 80 - 79 . 80 + 80 . 20 + 1
= 80 . (80 - 79 + 20) + 1 = 80 . 21 + 1
= 80 . 20 + 80 + 1
= 80.20 + 81 = 1681

2. 2001.2002.2003.2004+1= (2005 - 4).(2005 - 1)... 
<=>(2005A+4)(2005B+5+1)+1 
(2005A+4) chia 5 dư 4, (2005B+5+1)chia 5 dư 1 =>(2005A+4)(2005B+5+1) chia 5 dư 4, suy ra (2005A+4)(2005B+5+1)+1 chia hết cho 5 

24 tháng 8 2019

802=80*80.

802-79*80=80*80-79*80=1*80=80.                80+1601=1681.                                            1681 chia hết cho 41 suy ra 802-79*80+1601 là hợp số và không là số nguyên tố

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)

9 tháng 8 2017

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

9 tháng 8 2017

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)

30 tháng 12 2016

Bài 1 

Tách n thành 2 dạng 2k +1 (lẻ) và 2k (chẵn)

Với trường hợp 2k + 1 (lẻ) ,ta có :

(n + 4)(n + 5) 

= (2k + 1 + 4)(2k + 1 + 5)

= (2k + 5)(2k + 6)

= (2k + 5).2.(k + 3)    chia hết cho 2    (1)

Với trường hợp 2k (chẵn) ,ta có :

(n + 4)(n + 5) 

= (2k + 4)(2k + 5) 

= 2.(k + 2)(2k + 5) chia hết cho 2    (2)

Từ 1 và 2 

=> Với mọi x , thì (n + 4)(n + 5) chia hết cho 2 

30 tháng 12 2016

BẠN TỐT ĐẤY THẾ CÒN BÀI HAI THÌ SAO

8 tháng 1 2017

Cac Snt >3 deu co dang 6k+1;6k+2;6k+3;6k+4;6k+5

Neu p=6k+2 thi chia het cho 2

Neu p= 6k+3thi chia het cho 3

Neu p =6k+4 thi chia het cho 2

Vay p chi co the =6k+1 hoac 6k+5