\(\frac{1}{1.2}\)+\(\frac{1}{1.2.3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

Ta có:

\(\frac{1}{1.2.3.4}<\frac{1}{3.4}\)

\(\frac{1}{1.2.3.4.5}<\frac{1}{4.5}\)

\(...\)

\(\frac{1}{1.2.3...n}<\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+....+\frac{1}{1.2.3...n}<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+....+\frac{1}{1.2.3...n}<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+....+\frac{1}{1.2.3...n}<1+\frac{1}{n}-\frac{1}{n-1}\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+....+\frac{1}{1.2.3...n}<1+\frac{n-1}{n}\)

Vì \(\frac{n-1}{n}<1\Rightarrow\frac{n-1}{n}+1<2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+....+\frac{1}{1.2.3...n}<2\)

 

 

8 tháng 6 2017

Đặt A = \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3....n}\)

Ta có: \(\frac{1}{1.2}=\frac{1}{1.2}\)

\(\frac{1}{1.2.3}=\frac{1}{2.3}\)

\(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)

..............

\(\frac{1}{1.2.3....n}< \frac{1}{\left(n-1\right)n}\)

Cộng vế với vế ta được:

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1+1-\frac{1}{n}=2-\frac{1}{n}< 2\)(đpcm)

2 tháng 6 2018

a. \(\frac{1}{2}\) - ( \(\frac{1}{3}\) + \(\frac{1}{4}\) ) < x < \(\frac{1}{48}\) - ( \(\frac{1}{16}\) - \(\frac{1}{6}\) )

     \(\frac{1}{2}\) - \(\frac{7}{12}\)               < x < \(\frac{1}{48}\) - \(\frac{-5}{48}\) 

                   \(\frac{-1}{12}\)           < x < \(\frac{1}{8}\) 

Đề bài yêu cầu tìm x thuộc tập hợp gì bạn ơi. Bạn viết thiếu rồi .

6 tháng 9 2015

A\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Ta thấy

A\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

=> A> \(\frac{1}{75}\cdot25+\frac{1}{100}\cdot25\)

=>A > 7/12

A\(=\frac{1}{51}+...+\frac{1}{60}+\left(\frac{1}{61}+...+\frac{1}{70}\right)+\left(\frac{1}{71}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+...+\frac{1}{90}\right)+\left(\frac{1}{91}+...+\frac{1}{100}\right)\)>\(\frac{1}{60}\cdot10+\frac{1}{70}\cdot10+\frac{1}{80}\cdot10+\frac{1}{90}\cdot10+\frac{1}{100}\cdot10\)

>\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)

>1/6 *5

>5/6(chac la chuan roi day)

3 tháng 2 2017

sen qua lm sai rôi

25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)

30 tháng 5 2018

a) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{34}{103}\)

b) \(\frac{1}{2000.1999}-\frac{1}{1999.1998}-\frac{1}{1998.1997}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)(*)

Đặt biểu thức trong ngoặc là A ta có :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1997.1998}+\frac{1}{1998.1999}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}\)

\(A=1-\frac{1}{1999}\)

\(A=\frac{1998}{1999}\)

Thay vào biểu thức (*) ta có :

\(\frac{1}{2000.1999}-\frac{1998}{1999}\)

\(=\frac{1}{3998000}-\frac{1998}{1999}\)

\(=\frac{-3995999}{3998000}\)

c) \(\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)

\(=\frac{-1}{1.3}+\frac{-1}{3.5}+\frac{-1}{5.7}+\frac{-1}{7.9}+...+\frac{-1}{99.101}\)

\(=\frac{-1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)

\(=\frac{-1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{-1}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{-1}{2}.\frac{100}{101}\)

\(=\frac{-50}{101}\)

_Chúc bạn học tốt_

31 tháng 5 2018

cho thêm điều kiện x,y thuộc Z nữa nhá

\(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)

\(\frac{3}{x}=\frac{y-1}{3}\)

\(\Rightarrow x.\left(y-1\right)=9\)

Lập bảng ta có : 

x19-1-93-3
y-191-9-13-3
y102-804-2

Vậy ( x ; y ) = { ( 1 ; 10 ) ; ( 9 ; 2 ) ; ( -1 ; -8 ) ; ( -9 ; 0 ) ; ( 3 ; 4 ) ; ( -3 ; -2 ) }

mấy bài còn lại làm tương tự

18 tháng 7 2019

                                                                                   Bài giải

                                   Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)     ;    \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)        ; ..... ;             \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\)        \(^{\left(1\right)}\)

                        Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\)          ;         \(\frac{1}{3^2}>\frac{1}{3\cdot4}\)        ; ..... ;               \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)         \(^{\left(2\right)}\)       

Từ \(^{\left(1\right)}\) và \(^2\) 

       \(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\)      \(\left(ĐPCM\right)\)

18 tháng 7 2019

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

              \(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)  

              \(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)

              \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

              \(=1-\frac{1}{9}=\frac{8}{9}\)

\(\Rightarrow A< \frac{8}{9}\left(1\right)\)

Ta có:    \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)

                 \(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)

                 \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

                 \(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow A>\frac{2}{5}\left(2\right)\)

Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)

Các bạn nhớ k đúng mình nha (nếu đúng)

30 tháng 10 2020

VIẾT SAI ĐỀ BÀI NHÉ

50<A<100