Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần sửa đề : cho \(a\ge b\ge c>0\).
Áp dụng BĐT Cauchy-Schwarz:
\(VT=\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ca+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1}{2\cdot\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
\(\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ac+bc}\)>=\(\frac{\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ac\right)}>=\frac{ac+bc+ac}{2\left(ab+bc+ac\right)}\)=1/2
a
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.
b
\(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)
Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
a)Áp dụng BĐT B.C.S:(1^2+1^2)(x^2+y^2)>=(1.x+1.y)^2>>>2(x^2+y^2)>=(x+y)^2.Sau đó chia 2 ở cả 2 vế.
Áp dụng BĐT Cô-si:(x+y)>=2√xy >>>>(x+y)^2/2>=2xy(đpcm)
b)a^2+1/(a^2+1)=a^2+1+1/(a^2+1)-1>=2-1=1(BĐT Cô-si)
c)a^2+b^2>=2ab suy ra (a^2+b^2)c>=2abc,tương tự rồi cộng lại là >=6abc nhé
d)ab/a+b<=(a+b)^2/4(a+b)(cm ở câu a)=(a+b)/4
Tương tự cộng lại được ab/a+b+bc/b+c+ca/c+a<=(a+b+b+c+c+a)/4=(a+b+c)/2(đpcm)
Em có cách khác không sử dụng Svacxo thưa cô :
Ta có : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(=\left(\frac{a^2}{a+b}+\frac{a+b}{4}\right)+\left(\frac{b^2}{b+c}+\frac{b+c}{4}\right)+\left(\frac{c^2}{c+a}+\frac{c+a}{4}\right)-\frac{a+b+c}{2}\)
Áp dụng BĐT Cô si cho các số không âm ta được :
\(\left(\frac{a^2}{a+b}+\frac{a+b}{4}\right)+\left(\frac{b^2}{b+c}+\frac{b+c}{4}\right)+\left(\frac{c^2}{c+a}+\frac{c+a}{4}\right)-\frac{a+b+c}{2}\)
\(\ge2\sqrt{\frac{a^2}{a+b}\cdot\frac{a+b}{4}}+2\sqrt{\frac{b^2}{b+c}\cdot\frac{b+c}{4}}+2\sqrt{\frac{a^2}{b+c}\cdot\frac{c+a}{4}}-\frac{1}{2}\)
\(=a+b+c-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Có:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1/3