\(CM,\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

Bạn xét :

1/2 + 1/3 + 1/4 > 1

Thì : 1/5 + 1/6 + 1/7 + 1/8 + ...> 1

Vậy : 1/2 + 1/3 + 1/4 + ... 1/63 > 2

28 tháng 7 2018


Ta có: 1/2 + 1/3 + 1/4 = 6/12 + 4/12 + 3/12 = 13/12 > 1
     Và 1/5 + 1/6 + 1/7 + 1/8 + ... + 1/63 > 1
Suy ra 1/2 + 1/3 + ... + 1/63  > 1+1
Suy ra 1/2 + 1/3 + ... + 1/63  > 2
Vậy 1/2 + 1/3 + ... + 1/63  > 2
Chúc bạn học tốt

9 tháng 4 2017

Ta có 1/3+1/4>1/4+1/4=1/2

Suy ra , 1/2+1/3+1/4>1

* 1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=4/8=1/2 (1)

*1/9+1/10+1/11+...+1/17>1/17+1/17+1/17+...+1/17(9 p/s1/7)=9/17 >8.5/17=1/2 (2)

Từ (1) và (2) , suy ra : 1/5+1/6+1/7+...+1/17 > 1/2+1/2 = 1

Vậy: 1/2+1/3+1/4+...+1/17 > 2

Mà 2 < 1/2+1/3+1/4+...+1/17 < 1/2+1/3+1/4+...+1/63

Suy ra : 1/2+1/3+1/4+...+1/63 > 2 ( ĐPCM )

11 tháng 4 2017

1/2+1/3+1/4+...+1/63>2

A=1/1x2+1/1x3+1/1x4+...+1/1x63

A=1/2-1/63

A=61/126

suy ra 61/126 >2

1 tháng 5 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 2\left(đpcm\right)\)

20 tháng 6 2019

Chứng tỏ: 1/2 + 1/3 + 1/4 + ... + 1/63 > 2,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

Chứng tỏ: 1/2 + 1/3 + 1/4 + ... + 1/63 > 2,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

Có 2 cách nhé bạn

5 tháng 8 2016

1 + 1/2 + 1/3 + ... + 1/62 + 1/63 + 1/64

= 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + ... + 1/16) + (1/17 + 1/18 + ... + 1/32) + (1/33 + 1/34 + ... + 1/64) 

> 1 + 1/2 + 1/4 × 2 + 1/8 × 4 + 1/16 × 8 + 1/32 × 16 + 1/64 × 32

> 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2

> 1 + 1/2 × 6

> 1 + 3

> 4

5 tháng 8 2016

1 + 1/2 + 1/3 + ... + 1/62 + 1/63 + 1/64

= 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + ... + 1/16) + (1/17 + 1/18 + ... + 1/32) + (1/33 + 1/34 + ... + 1/64) 

> 1 + 1/2 + 1/4 × 2 + 1/8 × 4 + 1/16 × 8 + 1/32 × 16 + 1/64 × 32

> 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2

> 1 + 1/2 × 6

> 1 + 3

> 4