\(\dfrac{1+cos2a+sin2a}{1+sin2a-cos2a}=tana\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(VT=\dfrac{1+\cos^2a-\sin^2a+2\cdot\sin a\cdot\cos a}{1+2\cdot\sin a\cdot\cos a-\cos^2a+\sin^2a}\)

\(=\dfrac{2\cdot\cos^2a+2\cdot\sin a\cdot\cos a}{2\cdot\sin^2a+2\cdot\sin a\cdot\cos a}\)

\(=\dfrac{2\cdot\cos a\left(\cos a+\sin a\right)}{2\cdot\sin a\cdot\left(\sin a+\cos a\right)}\)

\(=\dfrac{\cos a}{\sin a}=\cot a\)

NV
3 tháng 6 2020

\(\pi< a< \frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\) \(\Rightarrow sin2a=2sina.cosa>0\)

\(\Rightarrow sin2a=\sqrt{1-cos^22a}=\frac{3\sqrt{7}}{8}\)

\(cos2a=1-2sin^2a=\frac{1}{8}\)

\(\Leftrightarrow sin^2a=\frac{7}{16}\Rightarrow sina=-\frac{\sqrt{7}}{4}\)

\(\Rightarrow M=\frac{-\frac{\sqrt{7}}{4}-\frac{3\sqrt{7}}{8}}{-\frac{\sqrt{7}}{4}+\frac{3\sqrt{7}}{8}}=...\)

\(sinx\left(1-tan^2\frac{x}{2}\right)=sinx\left(1-\frac{sin^2\frac{x}{2}}{cos^2\frac{x}{2}}\right)=sinx\left(1-\frac{1-cosx}{1+cosx}\right)\)

\(=sinx\left(\frac{1+cosx-\left(1-cosx\right)}{1+cosx}\right)=\frac{2sinx.cosx}{1+cosx}\)

\(1-sin2x.sin3x-cos2x.cos3x=1-\left(cos3x.cos2x+sin3x.sin2x\right)=1-cos\left(3x-2x\right)=1-cosx\)

\(\Rightarrow\frac{1-sin2x.sin3x-cos2x.cos3x}{sinx\left(1-tan^2\frac{x}{2}\right)}=\frac{1-cosx}{\frac{2sinx.cosx}{1+cosx}}=\frac{\left(1-cosx\right)\left(1+cosx\right)}{2sinx.cosx}\)

\(=\frac{1-cos^2x}{2sinx.cosx}=\frac{sin^2x}{2sinx.cosx}=\frac{sinx}{2cosx}=\frac{1}{2}tanx\)

19 tháng 4 2021

Sao có \(cosb\) ở đây??

24 tháng 4 2021

đó là cosa đó anh,em xin lỗi em viết nhầm

9 tháng 9 2020

Giải:

\(VP=\frac{sina+sin2a}{1+cosa+cos2a}=\frac{sina+2sinacosa}{1+cosa+2cos^2a-1}=\frac{sina\left(1+2cosa\right)}{cosa\left(1+2cosa\right)}=\frac{sina}{cosa}=tana=VT\)

=> ĐPCM

NV
7 tháng 6 2020

\(A=\frac{\left(1+cos2x\right)}{cos2x}.tanx=\frac{\left(1+2cos^2x-1\right)}{cos2x}.\frac{sinx}{cosx}=\frac{2cos^2x.sinx}{cos2x.cosx}=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)

\(B=\frac{1+2sin2a.cos2a-1+2sin^22a}{1+2sin2a.cos2a+2cos^22a-1}=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(C=\frac{2sina.cosa+sina}{1+2cos^2a-1+cosa}=\frac{sina\left(2cosa+1\right)}{cosa\left(2cosa+1\right)}=\frac{sina}{cosa}=tana\)

NV
29 tháng 5 2020

\(cos2A+cos2B+cos2C=2cos\left(A+B\right).cos\left(A-B\right)+2cos^2C-1\)

\(=-2cosC.cos\left(A-B\right)+2cos^2C-1\)

\(=-2cosC\left[cos\left(A-B\right)-cosC\right]-1\)

\(=-2cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]-1\)

\(=-4cosC.cosA.cosB-1\)

\(sin2A+sin2B+sin2C=2sin\left(A+B\right)cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left[cos\left(A-B\right)+cosC\right]=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=-4sinC.sinA.sin\left(-B\right)=4sinA.sinB.sinC\)

NV
30 tháng 6 2019

\(P=sin^22a+cos^22a+sin^22b+cos^22b+2sin2a.sin2b+2cos2a.cos2b\)

\(P=2+2\left(sin2a.sin2b+cos2a.cos2b\right)=2+2cos\left(2a-2b\right)\)

\(P=2+2cos\frac{\pi}{3}=3\)

NV
13 tháng 6 2020

\(A=\frac{sina+sin3a+sin2a}{cosa+cos3a+cos2a}=\frac{2sin2a.cosa+sin2a}{2cos2a.cosa+cos2a}=\frac{sin2a\left(2cosa+1\right)}{cos2a\left(2cosa+1\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(B=\frac{sin^2a\left(1+tan^2a\right)}{cos^2a\left(1+cot^2a\right)}=\frac{sin^2a.\frac{1}{cos^2a}}{cos^2a.\frac{1}{sin^2a}}=\frac{sin^4a}{cos^4a}=tan^4a\)

NV
8 tháng 6 2020

\(\frac{sina+sin3a+sin2a}{cosa+cos3a+cos2a}=\frac{2sin2a.cosa+sin2a}{2cos2a.cosa+cos2a}=\frac{sin2a\left(2cosa+1\right)}{cos2a\left(2cosa+1\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(cos^2\left(a-\frac{\pi}{4}\right)-sin^2\left(a-\frac{\pi}{4}\right)=cos\left(2a-\frac{\pi}{2}\right)\)

\(=cos\left(\frac{\pi}{2}-2a\right)=sin2a\)

30 tháng 3 2017

undefined