Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(3n^3+3n-101=a^3\)
\(\Leftrightarrow3n\left(n+1\right)-101=a^3\)
Thấy \(3n\left(n+1\right)\) là số chẵn,\(101\) lẻ nên \(n^3\) là số lẻ
Đặt \(n=2k+1\)
\(\Leftrightarrow3\left(n^2+n\right)-101=8k^3+12k^2+6k+1\)
\(\Leftrightarrow3\left(n^2+n-34\right)=8k^3+12k^2+6k\)
Thấy VT chia hết cho 3;\(12k^2+6k\) chia hết cho 3 nên \(8k^3\) chia hết cho 3
Mà \(\left(8;3\right)=1\Leftrightarrow k⋮3\)
Đặt \(k=3m\) ta có:
\(\Leftrightarrow3\left(n^2+n-34\right)=8\cdot27m^3+12\cdot9m^2+6\cdot3m\)
\(\Leftrightarrow n^2+n-34=6\left(12m^3+6m^2+m\right)\)
Nếu n chia hết cho 3 thì VT chia 3 dư 2 trong khi đó VP chia hết cho 3 ( loại )
Nếu m chia 3 dư 1 thì VT chia 3 dư 1 trong khi đó VP chia hết cho 3 ( loại )
Nếu m chia 3 dư 2 thì VT chia 3 dư 2 trong khi đó VP chia hết cho 3 ( loại )
Vậy không tồn tại n nguyên thỏa mãn đề bài.
Giả sử tồn tại số \(p\)thỏa mãn.
Ta đặt \(\frac{p^2-p-2}{2}=a^3\).
- \(p=2\)thỏa mãn.
- \(p>2\)do là số nguyên tố nên \(p\)lẻ.
Ta có: \(\frac{p^2-p-2}{2}=a^3\Leftrightarrow p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)\)suy ra \(p\)là ước của \(a+1\)hoặc \(a^2-a+1\).
+) \(p|a+1\): \(\frac{p^2-p-2}{2}=a^3\)suy ra \(a< p\Rightarrow a+1=p\).
Thế vào cách đặt ban đầu ta được \(\frac{\left(a+1\right)^2-\left(a+1\right)-2}{2}=a^3\Leftrightarrow2a^3-a^2-a+2=0\)
\(\Leftrightarrow a=-1\)không thỏa.
+) \(p|a^2-a+1\): Đặt \(a^2-a+1=kp\)(1).
\(p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)=2\left(a+1\right)kp\)
\(\Rightarrow p-1=2\left(a+1\right)k\Leftrightarrow p=2k\left(a+1\right)+1\)thế vào (1):
\(a^2-a+1=k\left[2k\left(a+1\right)+1\right]\)
\(\Leftrightarrow a^2-\left(2k^2+1\right)a-2k^2-k+1=0\)
\(\Delta=\left(2k^2+1\right)^2-4\left(-2k^2-k+1\right)=4k^4+12k^2+4k-3\).
Ta cần tìm số tự nhiên \(k\)để \(\Delta\)là số chính phương.
Ta có: \(4k^4+12k^2+4k-3>4k^4+8k^2+4=\left(2k^2+2\right)^2\)
\(4k^4+12k^2+4k-3< 4k^4+16k^2+16=\left(2k^2+4\right)^2\)
Theo nguyên lí kẹp suy ra \(4k^4+12k^2+4k-3=\left(2k^2+3\right)^2\)
\(\Leftrightarrow4k-3=9\Leftrightarrow k=3\).
Với \(k=3\): \(a^2-19a-20=0\Rightarrow a=20\Rightarrow p=127\).
Vậy \(p\in\left\{2,127\right\}\).
Ta có:
\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự suy ra biểu thức đã cho bằng \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) và là số chính phương
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Đặt \(M=2+2\sqrt{12n^2+1}\)
Để M là số nguyên thì 12n2 + 1 là số chính phương lẻ
Đặt 12n2 + 1 = (2k -1)2 (k \(\in\) N)
<=> 12n2 + 1 = 4k2 - 4k +1
<=> 12n2 = 4k2 - 4k
<=> 3n2 = k(k - 1)
=> k(k - 1) chia hết cho 3 => k chia hết cho 3 hoặc k - 1 chia hết cho 3
TH1 : k ⋮ 3 => n2 =(\(\frac{k}{3}\)).(k - 1) Mà (\(\frac{k}{3}\) ; k-1 )= 1 nên đặt \(\frac{k}{3}\) = x2 => k = 3x2
và đặt k - 1 = y2 => k = y2 +1
=> 3x2 = y2 + 1 = 2 ( mod 3)
Vô lý vì 1 số chính phương chia cho 3 có số dư là 0 hoặc 1
TH2 : k - 1 ⋮ 3: ta có :
=> n2 = \(\frac{k\left(k-1\right)}{3}\) Mà ( k; (\(\frac{k-1}{3}\)) =1 nên đặt k = z2
=> M = 2 + 2(2k - 1) = 4k = 4z2 =(2z)2 là 1 số chính phương
=> M là một số chính phương ( đpcm )
\(2+2\sqrt{12n^2+1}\in Z^+\Rightarrow2\sqrt{12n^2+1}\in Z^+\Rightarrow\sqrt{12n^2+1}\in Q\)
\(\Rightarrow\sqrt{12n^2+1}=m\in Z^+\Rightarrow12n^2=m^2-1⋮4\Rightarrow m=2k+1,k\in Z\)
\(12n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\Rightarrow3n^2=k\left(k+1\right)⋮3\)hoặc \(k+1⋮3\)
TH1: \(k=3q,q\in Z\Rightarrow3n^2=3q\left(q+1\right)\Rightarrow n^2=q\left(q+1\right)\)
Vì \(\left(q,3q+1\right)=1\Rightarrow\hept{\begin{cases}q=a^2\\3q+1=b^2\end{cases}\Rightarrow3q^2+1=b^2}\)
Ta có: \(2+2\sqrt{12n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.3q=4+12q^2=4b^2\)(CMT)
Ta có đpcm
TH2(tương tự):\(k=3q+1\)