K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 11 2019

\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\) \(\forall x\)

6 tháng 11 2019

Do x-x\(^2\le0\)\(\left(x^2\ge x\right)\)

---> \(x-x^2-1< 0\forall x\)

Chúc bạn học tốt

11 tháng 10 2017

\(2x-2x^2-1\)

=\(2\left(x-x^2-\dfrac{1}{2}\right)\)

= \(2\left(-x^2+2.\dfrac{1}{2}x-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{2}\right)\)

= \(2\left[\left(-x^2+2.\dfrac{1}{2}x-\dfrac{1}{4}\right)-\dfrac{1}{4}\right]\)

=\(2\left(-x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{2}\)

= \(-2\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{2}\)

= \(\dfrac{-1}{2}-2\left(x-\dfrac{1}{2}\right)^2\)

vậy \(2x-2x^2-1< 0\) với mọi số thực x

12 tháng 10 2017

👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇

27 tháng 10 2018

a ) Đề sai

b ) \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

c ) \(x-x^2-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\forall x\left(đpcm\right)\)

11 tháng 12 2019

a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x

Ta có:

\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\) với mọi \(x\in R\)

b)Ta có:

\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)

20 tháng 5 2016

a) X2 _ 2XY + Y+ 1= (X+Y) +1 lớn hơn hoặc bằng 1 => >0 với mọi số thực X và Y

b) X-X-1 = -X2 + X -1 = -(X2 -2.1/2X +1/4)-5/4 nhỏ hơn hoặc bằng -5/4 <0 với mọi số thực X

20 tháng 5 2016

a) x2-2xy+y2+1=(x-y)2+1>0(với mọi số thực x và y)

b) x-x2-1=-(x2-x+1\4)-3\4=-(x-1\2)2-3\4<0(với mọi số thực x)

31 tháng 10 2017

a)\(x^2-4xy+4y^2+3\)

\(=\left(x-2y\right)^2+3\)

Do \(\left(x-2y\right)^2\ge0\forall x,y\)

\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)

\(\left(x-2y\right)^2+3>0\forall x,y\)

=> Đpcm

b)\(2x-2x^2-1\)

\(=-x^2-x^2+2x-1\)

\(=-x^2-\left(x-1\right)^2\)

\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)

=> đpcm

Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.

Chúc bạn học tốt!^^

31 tháng 10 2017

sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT

7 tháng 10 2015

a) x2-6x+10

=(x^2-6x+9)+1

=(x-3)^2+1

vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0

Hay x^2-6x+10>0