![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3 : Áp dụng BĐT Bu - nhi - a cốp xki ta có :
\(A=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=\sqrt{2.2}=2\)
Vậy GTLN của A là 2 . Dấu \("="\) xảy ra khi \(x=3\)
\(B=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{\left(1^2+1^2\right)\left(6-x+x+2\right)}=\sqrt{2.8}=4\)
Vậy GTLN của B là 4 . Dấu \("="\) xảy ra khi \(x=2\)
\(C=\sqrt{x}+\sqrt{2-x}\le\sqrt{\left(1^2+1^2\right)\left(x+2-x\right)}=\sqrt{2.2}=2\)
Vậy GTLN của C là 2 . Dấu \("="\) xảy ra khi \(x=1\)
Bài 2:
a .\(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\("="\Leftrightarrow a=b\)
b. \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\Leftrightarrow a+b< \left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b< a+b+2\sqrt{ab}\left(a,b>0\right)\)
\(c.a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\) ( t nghĩ là > thôi )
d. \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
\("="\Leftrightarrow a=b=c\)
e. \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+b+2\sqrt{ab}}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a+2b-a-b-2\sqrt{ab}}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\) ( đúng)
\("="\Leftrightarrow a=b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
![](https://rs.olm.vn/images/avt/0.png?1311)
a, ĐK : \(x\ge0;x\ne4\)
b, \(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}
\(\sqrt{3x-5}=\sqrt{7x-1}\)
\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)
\(\left|3x-5\right|=\left|7x-1\right|\)
\(3x-5=7x-1\)
\(-4x=4\) => x = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ:...
\(M=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
\(N=\frac{x\sqrt{x}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)
Để \(M=N\Leftrightarrow x-1=2\sqrt{x}+1\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\left(\sqrt{3}+1\right)^2=4+2\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Đặt biểu thức đã cho là $A$
\(A=\sqrt{x^2+y^2}+\sqrt{xy}\)
\(\Rightarrow A^2=x^2+y^2+xy+2\sqrt{xy(x^2+y^2)}\)
Áp dụng BĐT AM-GM:
\(x^2+y^2\geq 2xy\Rightarrow 2\sqrt{xy(x^2+y^2)}\geq 2\sqrt{xy.2xy}\geq xy\) do \(x,y\geq 0\)
\(\Rightarrow A^2\geq x^2+y^2+xy+xy\Leftrightarrow A^2\geq (x+y)^2=4\)
\(\Leftrightarrow A\geq 2\) (đpcm)
Dấu bằng xảy ra khi \((x,y)=(2,0)\) và hoán vị.
Mặt khác:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(\sqrt{x^2+y^2}+\sqrt{xy})^2\leq (x^2+y^2+2xy)(1+\frac{1}{2})\)
\(\Leftrightarrow A^2\leq (x+y)^2.\frac{3}{2}=4.\frac{3}{2}=6\)
\(\Leftrightarrow A\leq \sqrt{6}\) (đpcm)
Dấu bằng xảy ra khi \((x,y)=\left(\frac{3+\sqrt{3}}{3}; \frac{3-\sqrt{3}}{3}\right)\)
cách làm cho lớp 9
\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1\)
\(x;y\ge0\Rightarrow xy\ge0\) \(0\le xy\le1\)
đặt x y =t => 0<=t<=1
\(A=\sqrt{x^2+y^2}+\sqrt{xy}=\sqrt{4-2t}+\sqrt{t}\)
\(A>0;A^2=4-t+2\sqrt{4t-2t^2}\)
m =A^2 -4 \(\Leftrightarrow m+t=\sqrt{4t-2t^2}\)
m +t >= 0=> m>=-1
\(\Leftrightarrow m^2+2mt+t^2=4\left(4t-2t^2\right)\)
\(9t^2+2\left(m-8\right)t+m^2=0\)
\(\Delta'\ge0\Leftrightarrow\left(m-8\right)^2-9m^2\ge0\Rightarrow-8m^2-2.8m+64\ge0\)
\(-4\le m\le2\)
với m =2 => t=2/3 đảm bảo điều kiện => GTLN m =2
m cần đảm bảo điều kiện
m+t>=0
\(\Leftrightarrow m+\dfrac{-\left(m-8\right)-\sqrt{-8m^2-18m+64}}{9}\ge0\)
\(\Leftrightarrow\dfrac{9m-\left(m-8\right)-\sqrt{-8m^2-18m+64}}{9}\ge0\)
\(\Leftrightarrow8m+8\ge\sqrt{-8m^2-18m+64}\)
m>=-1 => 8m+8 >=0
\(\Leftrightarrow64m^2+2.8.8m+64\ge-8m^2-18m+64\)
\(\Leftrightarrow m^2+2m\ge0\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge0\end{matrix}\right.\) đang xét m>=1 => m>=0
=> \(0\le m\le2\)
\(0\le A^2-4\le2\Leftrightarrow4\le A^2\le6\)
\(A>0\Rightarrow2\le A\le\sqrt{6}\) =>dpcm
đẳng thức khi t =0 ; t=2/3
\(t=0\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(2;0\right)\\\left(x;y\right)=\left(0;2\right)\end{matrix}\right.\)
\(t=\dfrac{2}{3}\) giải hệ
\(\left\{{}\begin{matrix}x+y=2\\xy=\dfrac{2}{3}\end{matrix}\right.\)
x;y là nghiệm pt : \(3z^2-6z+2=0\)
\(\Delta=9-6=3\Rightarrow\left(x;y\right)=\left(\dfrac{3\pm\sqrt{3}}{3};\dfrac{3\mp\sqrt{3}}{3}\right)\)