Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR:
\(x=\sqrt[3]{3+\sqrt{9+\dfrac{125}{7}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{7}}}\) là một số nguyên
Đề sai sửa lại là:
\(x=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow x=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow x^3=3+\sqrt{9+\dfrac{125}{27}}+3-\sqrt{9+\dfrac{125}{27}}+3.\left(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\right)\left(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}.\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\right)\)
\(\Leftrightarrow x^3=6+3x.\left(\dfrac{-5}{3}\right)\)
\(\Leftrightarrow x^3+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow x=1\)
Vậy x là số nguyên
a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)
\(\Leftrightarrow A^3=4-3A\)
=>A=1
c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(=1+3=4\)
a) \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
=\(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\)
=\(\sqrt[3]{\left(1+\sqrt{5}\right)^3}+\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)
=\(1+\sqrt{5}+1-\sqrt{5}=2\)
b) \(\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}\)
=\(\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)
=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
c) xem lại đề
Bạn Thái làm sai rồi
a)do ban đầu cậu nhân 2 cho hai vế nhưng bạn chưa chia lại.mik bổ sung ý tiếp cho bạn là
2A=2=>A=1.
mik lam tiep cau b la
B=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
=4-3
=1.
còn câu c mik pó tay :))
\(A=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow A=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow A^3=6+3A.\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}.\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow A^3=6+3A.\left(-\dfrac{5}{3}\right)\)
\(\Leftrightarrow A^3+5A-6=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+6\right)=0\)
\(\Leftrightarrow A=1\)
1,
a,\(4\sqrt{\dfrac{9}{2}}+\sqrt{2}+\sqrt{\dfrac{1}{18}}=4\sqrt{\dfrac{18}{4}}+\sqrt{2}+\sqrt{\dfrac{1}{9.2}}=4\dfrac{\sqrt{18}}{2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{1}{2}}=2\sqrt{9.2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{2}{4}}=2.3\sqrt{2}+\sqrt{2}+\dfrac{\sqrt{2}}{6}=6\sqrt{2}+\sqrt{2}+\sqrt{2}\dfrac{1}{6}=\dfrac{43}{6}\sqrt{2}\) b,\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}=4\sqrt{4.5}-3\sqrt{25.5}+5\sqrt{9.5}-15\dfrac{\sqrt{5}}{5}=4.2\sqrt{5}-3.5\sqrt{5}+5.3\sqrt{5}-3\sqrt{5}=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
*) Giải phương trình :
\(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\) ( ĐKXĐ : x \(\ge\) 2 )
\(\Leftrightarrow\sqrt{4\left(x-2\right)}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)
\(\Leftrightarrow2\sqrt{x-2}+5\sqrt{x-2}-3\sqrt{x-2}=20\)
\(\Leftrightarrow4\sqrt{x-2}=20\)
\(\Leftrightarrow\sqrt{x-2}=5\)
\(\Leftrightarrow x-2=25\)
\(\Leftrightarrow x=27\) ( thỏa mãn điều kiện )
Vậy phương trình có nghiệm x = 27 .
đâu cần lập đặt 2 ẩn a;b là 2 cái căn 3 đó xong đưa về hệ phương trình là được mà đăng lên hỏi chơi thôi
Có vẻ như là đề hơi sai á bạn. Bạn xem lại đề nha.