Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+y^2\ge2xy\)
\(\sqrt{x^2+y^2}\ge\sqrt{\frac{\left(x+y\right)^2}{2}}=\frac{\sqrt{2}}{2}\left(x+y\right)\)
Do các vế của BĐT đều dương, nhân vế với vế:
\(\left(x^2+y^2\right)\sqrt{x^2+y^2}\ge\sqrt{2}xy\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
a) \(BĐT\Leftrightarrow\sqrt{x}^2-2\sqrt{xy}+\sqrt{y}^2=\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)
ĐẲng thức xảy ra khi x = y
b)Sửa đề: biểu thức >= 8
Có: \(\frac{6}{a}-1=\frac{a+b+c}{a}-1=\frac{b+c}{a}\)
Tương tự hai đẳng thức còn lại rồi nhân theo vế:
\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\frac{8abc}{abc}=8\) (đpcm)
đẳng thức xảy ra khi a = b = c = 2
Mày giỏi thế ?? Bài này sử dụng kiến thúc nào để giải đấy >>
\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Dâu "=" xảy ra khi \(x=y=z\)