K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)

\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)

\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)

\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)

\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)

b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)

\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)

\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)

\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)

7 tháng 9 2018

bài 1 : (1) ta có : \(AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)

\(=BH^2+AC^2\left(đpcm\right)\)

(2) a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)

\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)

\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)

\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)

\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)

b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)

\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)

\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)

\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)

7 tháng 9 2018

bài 2 : (1) ta có : \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{BH^2.AC}{AB.HC^2}\)

\(=\dfrac{\dfrac{AB^4}{BC^2}.AC}{AB.\dfrac{AC^4}{BC^2}}=\left(\dfrac{AB}{AC}\right)^3\left(đpcm\right)\)

(2) ta có : \(BC.BE.CF=\dfrac{BH^2.HC^2}{AB.AC}.BC=\dfrac{BH^2.HC^2}{AH}\)

\(=\dfrac{\dfrac{AB^4.AC^4}{BC^4}}{AH}=\dfrac{BC^4.AH^4}{BC^4.AH}=AH^3\left(đpcm\right)\)

7 tháng 12 2016

Ta có

2a4 + 2b4 + 8 \(\ge\)2ab + 4a + 4b

<=> (2a4 - 4a2 + 2) + (2b4 - 4b2 + 2) + (2a2 - 4a + 2) + (2b2 - 4b + 2) + (a2 - 2ab + b2) + a2 + b2\(\ge\)0

<=> 2(a2 - 1)2 + 2(b2 - 1)2 + 2(a - 1)2 + 2(b - 1)2 + (a - b)2 + a2 + b2 \(\ge\)0 (đúng)