Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có
\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)
TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)
=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)
Dấu bằng xảy ra khi a=b=c
cảm ơn bạn nhiều, bạn có thể giúp mình hai câu kia nữa được không
Ta có:
\(\frac{2}{\sqrt{a}}+\frac{2}{\sqrt{b}}+\frac{2}{\sqrt{c}}=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)+\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)+\left(\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}\right)\)
\(\ge\frac{\left(1+1\right)^2}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+1\right)^2}{\sqrt{b}+\sqrt{c}}+\frac{\left(1+1\right)^2}{\sqrt{c}+\sqrt{a}}\)
\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{4}{\sqrt{b}+\sqrt{c}}+\frac{4}{\sqrt{c}+\sqrt{a}}\)
=> \(2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)\(\ge4\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)
=> \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)\(\ge2\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)
"=" xảy ra <=> a =b =c.
Đề bài trá hình học sinh :)))))))))))))))0
\(\left(a+b+c\right)\left(a'+b'+c'\right)\ge\left(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{a.a'}\right)^2\\
.\)
=> \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\ge\left(\sqrt{a.a'}+\sqrt{b.b'}+\sqrt{c.c'}\right)\\
\)
Dấu chính là điều phải chứng minh :))))))))))))
Bài này áp dụng BĐT Bunhiaacopxki ....................................>< .......................... Chúc học tốt <3
Áp dụng BĐT Cô - si ta có :
\(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a.\left(b+c\right)}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)
Chứng minh tương tự ta có :
\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng vế với vế của các BĐT cùng chiều ta có :
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy BĐT được chứng minh !
Dấu "=" xảy ra <=> a = b + c; c = a + b ; b = a + c => vô lí => Không thể xảy ra dấu "=" được