Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy F thuộc BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120 độ
=> góc BOF = góc COF = 60 do
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120 do
=> góc DOC = góc EOB = 60 do
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a) Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Vì BD là phân giác ABC
=> ABD = CBD = \(\frac{1}{2}ABC\)
Vì CE là phân giác ACB
=> ACE = BCE = \(\frac{1}{2}ACB\)
=> ABD = CBD = ACE = BCE
Xét ∆ABD và ∆ACE có :
ABD = ACE (cmt)
A chung
AB = AC (cmt)
=> ∆ABD = ∆ACE (g.c.g)
b) Vì ∆ABD = ∆ACE (cmt)
=> AE = AD
=> ∆ADE cân tại A
=> AED = \(\frac{180°-A}{2}\)
Vì ∆ABC cân tại A
=> ABC = \(\frac{180°-A}{2}\)
=> ABC = ADE
Mà 2 góc này ở vị trí đồng vị
=> ED//BC
=> EDCB là hình thang
Mà ABC = ACB (cmt)
=> EDCB là hình thang cân
=> EB = DC
Vì ED//BC
=> DEC = ECB ( so le trong)
Mà ACE = BCE (CE là phân giác)
=> DEC = ACE
=> ∆DEC cân tại D
=> ED = DC
Mà EB = DC (cmt)
=> ED = EB = DC
c) Vì ABC = \(\frac{180°-A}{2}=\:\frac{180°-50°}{2}\)= 65°
Vì EDCB là hình thang cân
=> EBC = DCB = 65°
Mà ED//BC
=> DEB + EBC = 180° ( trong cùng phía)
=> DEB = 180° - 65° = 115°
Mà EDCB là hình thang cân
=> DEB = EDC = 115°
a)ta có tam giác ABC cân tại A suy ra AB=AC
suy ra ACB=ABC suy ra 1/2 ACB=1/2ABCsuy ra DBC=ECB=ABD=ECA
xét tam giác DBC và tam giác ECB có
BC(chung)
ABC=ACB
ABC=ACB(cmt)
suy ra tam giác DBC =ECB(g.c.g)
suy ra BD=CE
b)
xét tam giác ABD và tam giác ACE có:
AB=AC
A(chung)
ABD=ECD(theo câu a)
suy ra tam giác ABD=ACE(g.c.g)
suy ra AE=AD suy ra tam giác AED cân tại A suy ra AED=(180-A)/2(1)
ta có tam giác ABC cân tại A suy ra ABC=(180-A)/2(2)
từ (1)(2) suy ra AED=ABC
suy ra ED//BC(2 góc đồng vị)
a: BC=căn 6^2+8^2=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=1
=>AD=3cm
b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có
góc ABD=góc EBC
=>ΔABD đồng dạng với ΔEBC
c: ΔABD đồng dạng với ΔEBC
=>AD/EC=AB/EB
=>AD/AB=EC/EB
=>CD/BC=EC/EB
a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
=>\(\widehat{ABC}+\widehat{ACB}+60^0=180^0\)
=>\(2\left(\widehat{OBC}+\widehat{OCB}\right)=180^0-60^0=120^0\)
=>\(\widehat{OBC}+\widehat{OCB}=60^0\)
Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)
=>\(\widehat{BOC}=180^0-60^0=120^0\)
Gọi OH là phân giác của góc BOC
=>\(\widehat{BOH}=\widehat{COH}=\dfrac{\widehat{BOC}}{2}=60^0\)
Ta có: \(\widehat{EOB}+\widehat{BOC}=180^0\)(hai góc kề bù)
=>\(\widehat{EOB}+120^0=180^0\)
=>\(\widehat{EOB}=60^0\)
=>\(\widehat{DOC}=60^0\)
Xét ΔEOB và ΔHOB có
\(\widehat{EOB}=\widehat{HOB}\left(=60^0\right)\)
OB chung
\(\widehat{EBO}=\widehat{HBO}\)
Do đó: ΔEOB=ΔHOB
=>OH=OE
Xét ΔOHC và ΔODC có
\(\widehat{OCH}=\widehat{OCD}\)
CO chung
\(\widehat{COH}=\widehat{COD}\left(=60^0\right)\)
Do đó: ΔOHC=ΔODC
=>OH=OD
=>OE=OD
=>ΔODE cân tại O
b: ΔOHB=ΔOEB
=>BH=BE
ΔOHC=ΔODC
=>HC=DC
BC=BH+CH
mà BH=BE và CH=CD
nên BC=BE+DC