Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)\)
\(=\frac{\sqrt{2}\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{10+2\sqrt{21}}+\sqrt{10-2\sqrt{21}}}{\sqrt{2}}\)
\(=\frac{\sqrt{3+2\sqrt{3.7}+7}+\sqrt{3-2\sqrt{3.7}+7}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}}{\sqrt{2}}\)
\(=\frac{|\sqrt{3}-\sqrt{7}|+|\sqrt{3}+\sqrt{7}|}{\sqrt{2}}\)
\(=\frac{-\sqrt{3}+\sqrt{7}+\sqrt{3}+\sqrt{7}}{\sqrt{2}}\)
\(=\frac{2\sqrt{7}}{\sqrt{2}}\)
\(=\sqrt{14}\)
Bài 1:
a)
\(\frac{\sqrt{2.3}+\sqrt{2.7}}{2\sqrt{3}+2\sqrt{7}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{7})}{2(\sqrt{3}+\sqrt{7})}=\frac{\sqrt{2}}{2}\)
b)
\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)}=\frac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)
Bài 2:
a)
\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}=\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}=\sqrt{4}-\sqrt{1}=1\) (đpcm)
b)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)
\(=\sqrt{\frac{(\sqrt{3}+1)^2}{2}}+\sqrt{\frac{(\sqrt{3}-1)^2}{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\) (đpcm)
c) Sửa đề:
\(\left(\frac{\sqrt{a}}{\sqrt{a}+2}-\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{a-4}=\left[\frac{a-2\sqrt{a}-(a+2\sqrt{a})}{(\sqrt{a}+2)(\sqrt{a}-2)}+\frac{4\sqrt{a}-1}{a-4}\right].(a-4)\)
\(=\left(\frac{-4\sqrt{a}}{a-4}+\frac{4\sqrt{a}-1}{a-4}\right).(a-4)=-4\sqrt{a}+4\sqrt{a}-1=-1\)
d)
\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{(\sqrt{a}+\sqrt{b})^2-(\sqrt{a}-\sqrt{b})^2}{2(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}+\frac{2b}{a-b}=\frac{4\sqrt{ab}}{2(a-b)}+\frac{2b}{a-b}\)
\(=\frac{2\sqrt{ab}+2b}{a-b}=\frac{2\sqrt{b}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(a.A=\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\sqrt{3}=\left(\sqrt{3-2\sqrt{3}.\sqrt{2}+2}+\sqrt{2}\right)\sqrt{3}=3\) \(b.B=\sqrt{4+2\sqrt{3}}+\sqrt{5+2\sqrt{6}}+\sqrt{2}=\sqrt{3+2\sqrt{3}+1}+\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}+\sqrt{2}=\sqrt{3}+1+\sqrt{3}+\sqrt{2}+\sqrt{2}=2\sqrt{3}+2\sqrt{2}+1\) \(c.2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}=2+\sqrt{17-4\sqrt{5+2.2\sqrt{5}+4}}=2+\sqrt{17-4\left(\sqrt{5}+2\right)}=2+\sqrt{5-2.2\sqrt{5}+4}=2+\sqrt{5}-2=\sqrt{5}\)
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)
\(=\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)
\(=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}\)
\(=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)
Vì \(a\le6\Rightarrow\sqrt{a-2}\le2\Rightarrow\sqrt{a-2}-2\le0\Rightarrow\left|\sqrt{a-2}-2\right|=2-\sqrt{a-2}\)
Vì \(a\ge2\Rightarrow\sqrt{a-2}+2\ge2>0\)
\(\Rightarrow\text{ }\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|=\sqrt{a-2}+2+2-\sqrt{a-2}=4\)
Ta có: \(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\)
\(=\sqrt{a-2}+2-\sqrt{a-2}+2\)
=4