\(\sqrt{1}+\sqrt{2}+\sqrt{3}+.....+\sqrt{n}\le n\frac{\sqrt{n+1}}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2015

Áp dụng BBĐT thức bu nhi a cốp x ki :  \(\left(a1b1+a2b2+...+anbn\right)^2\le\left(a1^2+a2^2+...+an^2\right)\left(b1^2+b2^2+...+bn^2\right)\)

 ( 1 ; 2 ; ... ; n là chỉ số )

 với \(a1=a2=...=an=1\)

\(b1=\sqrt{1};...bn=\sqrt{n}\)

Ta có : 

\(\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)^2\le\left(1+1+...+1\right)\left(1+2+3+..+n\right)=\frac{n.n\left(n+1\right)}{2}=\frac{n^2\left(n+1\right)}{2}\)

 ( có n số 1 ) 

=> \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le\sqrt{\frac{n^2\left(n+1\right)}{2}}=n\sqrt{\frac{n+1}{2}}\)

23 tháng 8 2015

Bài này thầy đã giải ở đây rồi em nhé:   http://olm.vn/hoi-dap/question/176263.html

29 tháng 9 2020

BĐT đúng với n=2

giả sử BĐT đúng với n=k , tức là: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}< k\sqrt{\frac{k+1}{2}}\)

Ta phải chứng minh BĐT đúng vớới n=k+1:

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)

Ta thấy: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\)

Mà: \(k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)(*)

Thậy vậy: (*)\(\Leftrightarrow\sqrt{k+1}\left(\frac{k}{\sqrt{2}}+1\right)< \left(k+1\right)\sqrt{\frac{k+2}{2}}\Leftrightarrow\frac{k}{\sqrt{2}}+1< \sqrt{k+1}\sqrt{\frac{k+2}{2}}\)

\(\Leftrightarrow\frac{k+\sqrt{2}}{\sqrt{2}}< \sqrt{k+1}\frac{\sqrt{k+2}}{\sqrt{2}}\Leftrightarrow k^2+2\sqrt{2k}+2< k^2+3k+2\)(luôn đúng)

Suy ra: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)

hay \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...\sqrt{n}< n\sqrt{\frac{n+1}{2}}\)

1 tháng 10 2020

Mình cảm ơn bạn ạ!!

21 tháng 5 2019

Hình như bạn chép sai đề , phải là dấu " < " chứ . Đây tớ CM này :

ta có:\(\sqrt{t}+\sqrt{t+1}< 2\sqrt{t+1}\) 

\(\Leftrightarrow\frac{1}{\sqrt{t+1}-\sqrt{t}}< 2\sqrt{t+1}\Leftrightarrow\frac{\sqrt{t+1}}{2\left(\sqrt{t+1}-\sqrt{t}\right)}< t+1\)

\(\Leftrightarrow\frac{1}{\left(t+1\right)\sqrt{t}}< \frac{2\left(\sqrt{t+1}-\sqrt{t}\right)}{\sqrt{t+1}\sqrt{t}}=2\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t+1}}\right)\)

Thế vào phương trình trên , ta có : \(\frac{1}{1\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{n\sqrt{n+1}}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)                                                                                                                \(=\)\(1-\frac{1}{\sqrt{n+1}}\)

Đó rõ ràng là <                                             (+_+)

22 tháng 5 2019

mk nhầm chút ,đoạn cuối phải là \(\le2\left(1-\frac{1}{\sqrt{n+1}}\right)\)

10 tháng 10 2016

Ta sẽ chứng minh bằng quy nạp : 

Dễ thấy BĐT đúng với n = 1,2 

Giả sử BĐT đúng với n = k (k là số tự nhiên) , tức \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}\le k\sqrt{\frac{k+1}{2}}\) 

Ta sẽ chứng minh BĐT cũng đúng với n = k+1 , tức là \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k+1}\le\left(k+1\right)\sqrt{\frac{k+2}{2}}\)

Ta có : \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}\le k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\)

Cần chứng minh \(k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\le\left(k+1\right)\sqrt{\frac{k+2}{2}}\)

Điều này tương đương với \(k\sqrt{k+1}+\sqrt{2}.\sqrt{k+1}\le\left(k+1\right)\sqrt{k+2}\)

\(\Leftrightarrow\sqrt{k+1}\left(\sqrt{k^2+3k+2}-\sqrt{2}-k\right)\ge0\)

\(\Leftrightarrow\sqrt{k^2+3k+2}\ge k+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{k^2+3k+2}\right)^2\ge\left(k+\sqrt{2}\right)^2\) (Vì k là số tự nhiên)

\(\Leftrightarrow k^2+3k+2\ge k^2+2\sqrt{2}k+2\)

\(\Leftrightarrow3k\ge2\sqrt{2}k\) (luôn đúng)

Vậy giả thiết quy nạp đúng.

Ta có điều phải chứng minh.

10 tháng 10 2016

Ngoài cách của Hoàng Lê Bảo Ngọc, mình sẽ giải cho bạn cách khác

Áp dụng bất đẳng thức Bunhiakopski:

\(\left(x_1+x_2+x_3+...+x_n\right)^2\le n\left(x_1^2+x_2^2+x_3^2+...+x_n^2\right)\)

Suy ra ta có:

\(\left(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\right)^2\le n.\left(1+2+3+...+n\right)\)

\(\Leftrightarrow\left(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\right)^2\le n.\frac{n\left(n+1\right)}{2}\)

Do đó:

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le\sqrt{\frac{n^2\left(n+1\right)}{2}}\)

\(\Leftrightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n.\sqrt{\frac{n+1}{2}}\)(đpcm)

29 tháng 9 2019

(Fix luôn lại đề)

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\left(n\in N\right)=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

=\(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Bài 2:

Áp dụng bài 1 vào A được:

A\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

25 tháng 7 2019

1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)

\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)

\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)

Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)

2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)

Áp dụng công thức trên ta được n=2016

3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)

\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)

Thay x=1/3 vào A ta được;

\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)

Bài 4

ÁP DỤNG BĐT CAUCHY 

là ra

13 tháng 8 2017

A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\) 

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

28 tháng 11 2019

chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)

28 tháng 11 2019

a, Ta có

\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, áp dụng bđt ta có

\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)

\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)

\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..

\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)

\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)