Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)
Ta có : \(n^2+4n+5=\left(n+2\right)^2+1\)
Giả sử \(\left(n+2\right)^2+1\) \(⋮8\)
Ta có n lẻ => n+2 lẻ => (n+2)2 lẻ
Vì (n+2)2 là số chính phương lẻ nên chia 8 chỉ dư 1
<=> ( n+2)2 chia 8 dư 1
=> (n+2)2 + 1 chia 8 dư 2 => mâu thẫn với giả sử => điều giả sư sai => n2 + 4n + 5 không chia hết cho 8 ( đpcm)
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.
Với mọi n là số tự nhiên lẻ, ta có thể biểu diễn n = 2k+1 với k là số tự nhiên
Ta có : \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=\left(2k+2\right)\left(2k+4\right)=2.\left(k+1\right).2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)
mà (k+1)(k+2) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2
Suy ra \(n^2+4n+3\) chia hết cho 2x4 = 8 với mọi n lẻ
Ta có:
n2 + 4n + 3
= n2 + n + 3n + 3
= n.(n + 1) + 3.(n + 1)
= (n + 1).(n + 3)
Do n lẻ => n = 2.k + 1 (k thuộc N)
=> (n + 1).(n + 3) = (2.k + 1 + 1).(2.k + 1 + 3)
= (2.k + 2).(2.k + 4)
= 2.(k + 1).2.(k + 2)
= 4.(k + 1).(k + 2)
Vì (k + 1).(k + 2) là tích 2 số tự nhiên liên tiếp => (k + 1).(k + 2) chia hết cho 2
-=> 4.(k + 1).(k + 2) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 (đpcm)
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
\(n^2+4n+3\\ =n^2+n+3n+3\\ =n\left(n+1\right)+3\left(n+1\right)\\ =\left(n+1\right)\left(n+3\right)\\ n=2k+1\left(k\in Z\right)\\ \Rightarrow n^2+4n+3\\ =\left(2k+2\right)\left(2k+4\right)\\ =2\left(k+1\right)\cdot2\left(k+2\right)\\ =4\left(k+1\right)\left(k+2\right)\)
\(\left(k+1\right)\left(k+2\right)\) là tích hai số nguyên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)⋮2\Rightarrow\left(k+1\right)\left(k+2\right)=2a\)
\(\Rightarrow n^2+4n+3=8a⋮8\)