\(n\) và \(n^5\) là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

n^5-n=n(n^4-1)=n(n²-1)(n²-4+5) 
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a) 
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10 
( vì (2,5)=1) (b) 
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c) 
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10 
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm) 

k mk đi

18 tháng 2 2019

 A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1) 

* n(n +1) chia hết cho 2 => A chia hết cho 2. 

*cm: A chia hết cho 5. 

n chia hết cho 5 => A chia hết cho 5. 

n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4) 

- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5 

- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5 

- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5 

- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5 

=> A luôn chia hết cho 5 

2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0 

=>đpcm

19 tháng 8 2015

Bạn xét hệu cái 2 - cái 1,rồi phân tích thành nhân tử,được tích chứa 5 số tự nhiên liên tiếp chia hết cho 10=>đccm

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

10 tháng 12 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

              

Bài 1 : Ta có :

\(VT=\left(10a+5\right)^2=100a^2+100a+25\)

\(VP=100a\left(a+1\right)+25=100a^2+100a+25\)

\(\Rightarrow VT=VP\left(đpcm\right)\)

Bài 2 : Bài này mong rằng bạn hiểu

Nếu như bình phương 1 số nếu tận cùng là số 5 thì ta làm như sau :

VD : \(25^2=2.3\) và đặt số 25 vào bên phải . Từ đó ra kết quả

Bài1:

\(VT=\left(10a+5\right)^2=100a^2+100a+25=100a\left(a+1\right)+25\)=VP

Do đó:\(\left(10a+5\right)^2=100a\left(a+1\right)+25\left(đpcm\right)\)

3 tháng 9 2021

4m2+m=5n2+n

{=}5m2+m=5n2+n+m2

{=}5(m2-n2)+(m-n)=m2

{=}(m-n)(5m+5n+1)=m2

3 tháng 9 2021

là sao

Sử dụng phép  đồng dư nhá bạn.

\(7\equiv7\)(mod 100)

\(7^3\equiv43\)(mod 10)

\(7^4=1\)(mod 10)

\(\left(7^4\right)^{10}\equiv1^{10}=1\) (mod 10)

\(7^{40}.7^3\equiv1.43\equiv43\)  (mod10)

Vậy .....................................

16 tháng 6 2019

ta có: 7^34=7^4.10+3=7^4.10 .7^3=(7^4)^10 .7^3=2401^10 .343=...01.343=...43

=> dpcm