Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)
\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)
d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
=> \(x:\frac{1}{45}=\frac{1}{2}\)
=> \(x=\frac{1}{2}.\frac{1}{45}\)
=> \(x=\frac{1}{90}\)
Vậy \(x=\frac{1}{90}.\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)
Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.
Chúc bạn học tốt!
B. 1/3 - 1/3 - 3/5 +3/5 + 5/7 - 5/7 + 9/11 - 9/11 -11/13 + 11/ 13 + 7/9 + 13/15
= 0 -0-0-0-0+7/9 +13/15
= 74/45
e) \(\frac{1}{7}.\frac{-3}{8}+\frac{-13}{8}.\frac{1}{7}\)
\(=\frac{1}{7}.\left[\left(-\frac{3}{8}\right)+\left(-\frac{13}{8}\right)\right]\)
\(=\frac{1}{7}.\left(-2\right)\)
\(=-\frac{2}{7}.\)
Chúc bạn học tốt!
giúp mik vs, mik bik các pạn giờ này đang ngủ rùi nhưng giúp mik lần này thui.yêu các pạn nhìu
\(5\frac{1}{2}+\left(-3\right)=\frac{11}{2}+\frac{-3}{1}\)\(=\frac{11}{2}+\frac{-6}{2}=\frac{5}{2}\)\(;\)
\(4\frac{9}{11}+\left(-2\frac{1}{11}\right)=\frac{53}{11}+\frac{-23}{11}\)\(=\frac{30}{11}\)\(;\)
\(2\frac{1}{2}+\left(-6\right)=\frac{5}{2}+\frac{-6}{1}\)\(=\frac{5}{2}+\frac{-12}{2}=\frac{-7}{2}\)\(;\)
\(\left(-\frac{4}{5}\right)+\frac{1}{2}=\frac{-4}{5}+\frac{1}{2}\)\(=\frac{-8}{10}+\frac{5}{10}=\frac{-3}{10}\)\(;\)
\(4,3-\left(-1,2\right)=4,3+1,2=5,5\)\(=\frac{55}{10}=\frac{11}{2}\)\(;\)
\(0-\left(-0,4\right)=0+0,4=0,4\)\(=\frac{4}{10}=\frac{2}{5}\)\(;\)
\(\frac{-2}{3}-\frac{-1}{3}=\frac{-2}{3}+\frac{1}{3}=\frac{-1}{3}\)\(;\)
\(\frac{-1}{2}-\frac{-1}{6}=\frac{-1}{2}+\frac{1}{6}\)\(=\frac{-3}{6}+\frac{1}{6}=\frac{-2}{6}=\frac{-1}{3}\)\(;\)
\(x+\frac{1}{3}=\frac{3}{4}\) \(;\) \(x-\frac{2}{5}=\frac{5}{7}\) \(;\)
\(x=\frac{3}{4}-\frac{1}{3}\) \(x=\frac{5}{7}+\frac{2}{5}\)
\(x=\frac{5}{12}\) \(x=\frac{39}{35}\)
\(-x-\frac{2}{3}=-\frac{6}{7}\) \(;\) \(\frac{4}{7}-x=\frac{1}{3}\)
\(\frac{6}{7}-\frac{2}{3}=x\) \(\frac{4}{7}-\frac{1}{3}=x\)
\(\frac{4}{21}=x\) \(\Leftrightarrow\)\(x=\frac{4}{21}\) \(\frac{5}{21}=x\)\(\Leftrightarrow\)\(x=\frac{5}{12}\)
1.
a.
\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)
\(=\frac{35-21-15}{105}\)
\(=-\frac{1}{105}\)
b.
\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)
\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)
\(=\frac{12-15+10}{20}\)
\(=\frac{7}{20}\)
c.
\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)
\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)
\(=\frac{60-42-35}{105}\)
\(=-\frac{17}{105}\)
2.
a.
\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)
\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)
\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(S=-\left(1-\frac{1}{n}\right)\)
\(S=-1+\frac{1}{n}\)
b.
\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)
\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)
\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(S=-\left(1-\frac{1}{n}\right)\)
\(S=-1+\frac{1}{n}\)
Chúc bạn học tốt